this question is from Pythagoras thoerm Qno7
Attachments:
![](https://hi-static.z-dn.net/files/d1b/ddb12703177dab59aef744e7a1c3e30d.jpg)
Answers
Answered by
2
Hey.....
Let ABCD be rectangle.
Then AC will be diagonal. And angle B = 90.
Length(BC) = 40 cm
diagonal(AB) = 41 cm
By using pythagoras theorem, we have:-
Now,
Perimeter of rectangle = 2(L+B) = 2(BC+ AB)
= 2(9 + 40) = 2(49)
= 98 cm
Let ABCD be rectangle.
Then AC will be diagonal. And angle B = 90.
Length(BC) = 40 cm
diagonal(AB) = 41 cm
By using pythagoras theorem, we have:-
Now,
Perimeter of rectangle = 2(L+B) = 2(BC+ AB)
= 2(9 + 40) = 2(49)
= 98 cm
Answered by
3
HEYA!!
---------
----------------------------------------------------------------------------------------------------
✨Refer to the attachment for the figure ✨
----------------------------------------------------------------------------------------------------
Applying Pythagoras theorem ,
Hypotenuse ^2 = Base^2 + Perpendicular ^ 2
(41)^2 = (40)^2 + Perpendicular ^2
1681 = 1600 + (p)^2
1681 - 1600 = (p)^2
P^2 = 81
P^2 = (9)^2
Perpendicular = 9 cm .
----------------------------------------------------------------------------------------------------
〰Perimeter of a rectangle = 2 × ( l + B )
= 2 × ( 40 + 9)
= 2 × 49
= 98 cm.
---------------------------------------------------☺-------------------------------------------------
---------
----------------------------------------------------------------------------------------------------
✨Refer to the attachment for the figure ✨
----------------------------------------------------------------------------------------------------
Applying Pythagoras theorem ,
Hypotenuse ^2 = Base^2 + Perpendicular ^ 2
(41)^2 = (40)^2 + Perpendicular ^2
1681 = 1600 + (p)^2
1681 - 1600 = (p)^2
P^2 = 81
P^2 = (9)^2
Perpendicular = 9 cm .
----------------------------------------------------------------------------------------------------
〰Perimeter of a rectangle = 2 × ( l + B )
= 2 × ( 40 + 9)
= 2 × 49
= 98 cm.
---------------------------------------------------☺-------------------------------------------------
Attachments:
![](https://hi-static.z-dn.net/files/df5/6f2f9da97d5c45b81a9233bc460c07f2.jpg)
Similar questions