Physics, asked by niludevi1977, 11 months ago

Three blocks, of masses m, = 2.0, m = 4.0 and
m, = 6.0 kg are connected by strings on a
frictionless inclined plane of 60°, as shown in the
figure. A force F = 120 N is applied upwards along
the incline to the uppermost block, causing an
upward movement of the blocks. The connecting
cords are light. The values of tensions T, and T, in
the cords are​

Attachments:

Answers

Answered by Anonymous
40

Answer :-

 T_1 = 19.98  N

 T_2= 60.06 N

Given :-

 m_1 = 2kg ,m_2 = 4kg ,m_3 = 6kg \\ F = 120 N

To find :-

The value of  T_1 ,T_2

Solution:-

  • Take block  m_1 as system.

The force applied on block is :-

  • Tension force upward.
  • mg component as downward.

\mathsf{ T_1 - m_1g Sin\theta =m_1a }

 \mathsf{T_1 - m_1g Sin60^{\circ} = m_1a  -----1)}

  • For block  m_2

 \mathsf{T_2 - T_1 - m_2g Sin60^{\circ} = m_2a------2)}

  • For block  m_3

\mathsf{ F - T_2 - m_3g Sin60^{\circ} = m_3a -----3) }

  • Adding eq.1 ,eq.2 and eq.3

 \mathsf{T_1 - m_1g Sin60^{\circ} + T_2 - T_1 - m_2g Sin60^{\circ} + F - T_2 - m_3g Sin60^{\circ} = m_1a + m_2a + m_3a}

 \mathsf{F - m_1g Sin 60 - m_2gSin60 -m_3g Sin60 = a ( m_1 + m_2 + m_3)}

 \mathsf{F - g Sin60 ( m_1 +m_2 + m_3 ) = a (m_1 + m_2 + m_3)}

 \mathsf{120 - 10 \times \dfrac{\sqrt{3}}{2}( 2 + 4 + 6) = a ( 2 +4+6) }

 \mathsf{120 - 5 \sqrt{3}( 12 ) = 12a}

 \mathsf{120 -60\sqrt{3} = 12 a}

 \mathsf{16. 07= 12 a}

 \mathsf{a = \dfrac{16.07}{12}}

 \mathsf{a = 1.33m/s^2 }

hence,

The acceleration of the system is

The acceleration of the system is 1.33 m/s².

  • Put the value of a in eq.1 and eq.2.

 \mathsf{T_1 - m_1g Sin60^{\circ} = m_1a }

 \mathsf{T_1 - 20\times \dfrac{\sqrt{3}}{2}= 2 \times 1.33}

 \mathsf{T_1 -10\sqrt{3} =2.66}

 \mathsf{T_1 = 2.66 + 17.32}

 \mathsf{T_1 = 19.98  N}

Now,

\mathsf{ F - T_2 - m_3g Sin60^{\circ} = m_3a}

 \mathsf{120 - T_2 - 6 \times 10 \times \dfrac{\sqrt{3}}{2}= 6 \times 1.33 }

 \mathsf{120 - T_2 -30\sqrt{3} = 7.98}

 \mathsf{120 - 51.96 -T_2 = 7.98}

 \mathsf{T_2 = 120 - 51.96 -7.98}

 \mathsf{T_2 = 120 - 59.94 }

 \mathsf{T_2= 60.06 N }

hence,

The tension force is 19.98 N and 60.06 N.

Answered by Anonymous
12

Hello there!

Check out the attachment for your answer!

Thank you! :)

Attachments:
Similar questions