Math, asked by aabidsk563, 1 year ago

three consecutive natural numbers are such that the sum of the square of the smallest number and the product of the other two, is 277. find the numbers​

Answers

Answered by mddilshad11ab
122

\huge{\underline{\purple{\rm{Solution:}}}}

\bold{\underline{\red{\rm{Let:}}}}

  • The 3 consecutive numbers are
  • X,(X+1),(X+2

\large{\underline{\green{\rm{To\:Find:}}}}

  • The number

\large{\underline{\red{\rm{Given:}}}}

  • Three consecutive natural numbers are such that the sum of the square of the smallest number and the product of the other two, is 277.

\small{\underline{\red{\rm{As\:per\:the\: above\: information:}}}}

\sf{\dashrightarrow X^2+(X+1)(X+2)=277}

\sf{\dashrightarrow X^2+X^2+3X+2=277}

\sf{\dashrightarrow 2X^2+3X+2=277}

\sf{\dashrightarrow 2X^2+3X-275=0}

\sf{\dashrightarrow 2X^2-22X+25X-275=0}

\sf{\dashrightarrow 2(X-11)+25(X-11)=0}

\sf{\dashrightarrow (2X+25)(X-11)=0}

Therefore, X=-25/2 or 11

  • here negative value can't be kept

Hence,

The number's are

\sf{1st\: Number=X=11}

\sf{1st\: Number=X+1=11+1=12}

\sf{1st\: Number=X+2=11+2=13}

Answered by Rohit18Bhadauria
35

Given:

Three consecutive natural numbers are such that the sum of the square of the smallest number and the product of the other two, is 277.

To Find:

All three numbers following above conditions

Given:

Let the three consecutive natural numbers be n,n+1 and n+2 where n is a natural number

So, according to the question

\longrightarrow\mathrm{n^{2}+(n+1)(n+2)=277}'

\longrightarrow\mathrm{n^{2}+n^{2}+3n+2=277}

\longrightarrow\mathrm{2n^{2}+3n+2=277}

\longrightarrow\mathrm{2n^{2}+3n+2-277=0}

\longrightarrow\mathrm{2n^{2}+3n-275=0}

\longrightarrow\mathrm{2n^{2}+25n-22n-275=0}

\longrightarrow\mathrm{n(2n+25)-11(2n+25)=0}

\longrightarrow\mathrm{(n-11)(2n+25)=0}

\longrightarrow\mathrm{n=11,\dfrac{-25}{2}}

Since, \dfrac{-25}{2} is not a natural number

So, n=11

Therefore, the required numbers are

⇒ n=11

⇒ n+1=11+1=12

⇒ n+2=11+2=13

Hence, the required numbers are 11, 12 and 13.

Similar questions