Math, asked by aabidsk563, 11 months ago

three consecutive natural numbers are such that the sum of the square of the smallest number and the product of the other two, is 277. find the numbers​

Answers

Answered by mddilshad11ab
122

\huge{\underline{\purple{\rm{Solution:}}}}

\bold{\underline{\red{\rm{Let:}}}}

  • The 3 consecutive numbers are
  • X,(X+1),(X+2

\large{\underline{\green{\rm{To\:Find:}}}}

  • The number

\large{\underline{\red{\rm{Given:}}}}

  • Three consecutive natural numbers are such that the sum of the square of the smallest number and the product of the other two, is 277.

\small{\underline{\red{\rm{As\:per\:the\: above\: information:}}}}

\sf{\dashrightarrow X^2+(X+1)(X+2)=277}

\sf{\dashrightarrow X^2+X^2+3X+2=277}

\sf{\dashrightarrow 2X^2+3X+2=277}

\sf{\dashrightarrow 2X^2+3X-275=0}

\sf{\dashrightarrow 2X^2-22X+25X-275=0}

\sf{\dashrightarrow 2(X-11)+25(X-11)=0}

\sf{\dashrightarrow (2X+25)(X-11)=0}

Therefore, X=-25/2 or 11

  • here negative value can't be kept

Hence,

The number's are

\sf{1st\: Number=X=11}

\sf{1st\: Number=X+1=11+1=12}

\sf{1st\: Number=X+2=11+2=13}

Answered by Rohit18Bhadauria
35

Given:

Three consecutive natural numbers are such that the sum of the square of the smallest number and the product of the other two, is 277.

To Find:

All three numbers following above conditions

Given:

Let the three consecutive natural numbers be n,n+1 and n+2 where n is a natural number

So, according to the question

\longrightarrow\mathrm{n^{2}+(n+1)(n+2)=277}'

\longrightarrow\mathrm{n^{2}+n^{2}+3n+2=277}

\longrightarrow\mathrm{2n^{2}+3n+2=277}

\longrightarrow\mathrm{2n^{2}+3n+2-277=0}

\longrightarrow\mathrm{2n^{2}+3n-275=0}

\longrightarrow\mathrm{2n^{2}+25n-22n-275=0}

\longrightarrow\mathrm{n(2n+25)-11(2n+25)=0}

\longrightarrow\mathrm{(n-11)(2n+25)=0}

\longrightarrow\mathrm{n=11,\dfrac{-25}{2}}

Since, \dfrac{-25}{2} is not a natural number

So, n=11

Therefore, the required numbers are

⇒ n=11

⇒ n+1=11+1=12

⇒ n+2=11+2=13

Hence, the required numbers are 11, 12 and 13.

Similar questions