Math, asked by Anonymous, 5 months ago

three cubes of side 4cm each are placed one above another.The volume of the resulting cuboid will be?​

Answers

Answered by BʀᴀɪɴʟʏAʙCᴅ
17

\huge\mathcal{\mid{\mid{\underline{\pink{Good\: Afternoon\:}}}{\mid{\mid}}}} \\

\Large{\colorbox{pink}{\bf{\green{QuEsTiOn;-}}}} \\

\red\checkmark\:\:\bf\blue{Integral\:of\:\dfrac{\sqrt{tanx}}{sinx.cosx}} \\

\huge{\orange{\boxed{\fcolorbox{lime}{indigo}{\color{aqua}ANSWER}}}} \\

:\implies\:\:\Large\bf{\int\:\dfrac{\sqrt{tanx}}{sinx.cosx}\:dx} \\

:\implies\:\:\bf{\int\:\dfrac{\sqrt{tanx}}{(\frac{sinx.cosx}{cos^2x})\:cos^2x}\:dx} \\

:\implies\:\:\bf{\int\:\dfrac{\sqrt{tanx}}{(\frac{sinx}{cosx})\:cos^2x}\:dx} \\

:\implies\:\:\bf{\int\:\dfrac{\sqrt{tanx}}{tanx}\:.\:sec^2x\:dx} \\

:\implies\:\:\bf{\int\:\dfrac{1}{\sqrt{tanx}}\:.\:sec^2x\:dx} \\

\Large\bf\pink{Let} \\

\bf{tanx\:=\:t}

\longmapsto\:\:\bf{sec^2x\:.\:dx\:=\:dt\:} \\

:\implies\:\:\bf{\int\:\dfrac{1}{t^{1/2}}\:.\:dt} \\

:\implies\:\:\bf{\int\:t^{-\:\frac{1}{2}}\:.\:dt} \\

:\implies\:\:\bf{\dfrac{t^{-\:\frac{1}{2}\:+\:1}}{-\:\frac{1}{2}\:+\:1}\:+\:c} \\

:\implies\:\:\bf{\dfrac{t^{\frac{1}{2}}}{\frac{1}{2}}\:+\:c} \\

:\implies\:\:\bf{2\:t^{\frac{1}{2}}\:+\:c} \\

:\implies\:\:\bf\green{2\:\sqrt{tanx}\:+\:c} \\

Similar questions