Physics, asked by dipsydimpho, 6 months ago

Three equal charges of 4 x 10-7 C are located at the corners of a right angled triangle
ABC whose sides are AB – 6 cm, BC = 8 cm and CA = 10 cm. Find the force exerted on
the charge located at the 90° angle. [8 marks

Answers

Answered by Anonymous
9

Answer :

  • The force exerted (Resultant force) on the charge located at the 90° angle is 0.46 N

Explanation :

Given :

  • Magnitude of three equal charges, Q = 4 × 10⁻⁷ C

  • Side of the triangle, AB = 6 cm or 6 × 10⁻² m

  • Side of the triangle, BC = 8 cm or 8 × 10⁻² m

  • Side of the triangle, AC = 10 cm or 10 × 10⁻² m

To find :

  • Force exerted on the charge located at 90° angle, Fr = ?

Knowledge required :

Formula for force :

\boxed{\sf{F = \dfrac{1}{4\pi\epsilon}\dfrac{Qq}{r^{2}}}}

Where :

  • \bf{\dfrac{1}{4\pi\epsilon}} = Permittivity of a medium, here the constant.

  • Q/q = Positive point charges.

  • r = Distance between the charge

The value of \bf{\dfrac{1}{4\pi\epsilon}} is taken as 9 × 10⁹N m²c⁻²

Solution :

Now,

Let's find out the force exerted by A on B .

Here,

  • Q = 4 × 10⁻⁷ C
  • q = 4 × 10⁻⁷ C
  • r = 6 × 10⁻² m

By using the formula for force and substituting the values in it, we get :

:\implies \sf{F_{1} = \dfrac{1}{4\pi\epsilon}\dfrac{Qq}{r_{1}^{2}}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times 10^{9} \times \dfrac{4 \times 10^{-7} \times 4 \times 10^{-7}}{(6 \times 10^{-2})^{2}}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-7) + (-7)}}{(6 \times 10^{-2})^{2}}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-14)}}{(6 \times 10^{-2})^{2}}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-14)}}{36 \times 10^{-4}}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-14) - (-4)}}{36}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-14) + 4}}{36}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-10)}}{36}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times \dfrac{16 \times 10^{(-10) + 9}}{36}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times \dfrac{16 \times 10^{(-1)}}{36}} \\ \\ \\

:\implies \sf{F_{1} =  \dfrac{16 \times 10^{(-1)}}{4}} \\ \\ \\

:\implies \sf{F_{1} =  4 \times 10^{(-1)}} \\ \\ \\

:\implies \sf{F_{1} =  0.4} \\ \\ \\

\boxed{\therefore \sf{F_{1} =  0.4\:N}} \\ \\ \\

Hence the force exerted by A on B is 0.4 N.

Let's find out the force exerted by B on C .

Here,

  • Q = 4 × 10⁻⁷ C
  • q = 4 × 10⁻⁷ C
  • r = 8 × 10⁻² m

By using the formula for force and substituting the values in it, we get :

:\implies \sf{F_{2} = \dfrac{1}{4\pi\epsilon}\dfrac{Qq}{r_{2}^{2}}} \\ \\ \\

:\implies \sf{F_{2} = 9 \times 10^{9} \times \dfrac{4 \times 10^{-7} \times 4 \times 10^{-7}}{(8 \times 10^{-2})^{2}}} \\ \\ \\

:\implies \sf{F_{2} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-7) + (-7)}}{(8 \times 10^{-2})^{2}}} \\ \\ \\

:\implies \sf{F_{2} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-14)}}{(8 \times 10^{-2})^{2}}} \\ \\ \\

:\implies \sf{F_{2} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-14)}}{64 \times 10^{-4}}} \\ \\ \\

:\implies \sf{F_{2} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-14) - (-4)}}{36}} \\ \\ \\

:\implies \sf{F_{1} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-14) + 4}}{64}} \\ \\ \\

:\implies \sf{F_{2} = 9 \times 10^{9} \times \dfrac{16 \times 10^{(-10)}}{64}} \\ \\ \\

:\implies \sf{F_{2} = 9 \times \dfrac{16 \times 10^{(-10) + 9}}{64}} \\ \\ \\

:\implies \sf{F_{2} = 9 \times \dfrac{16 \times 10^{(-1)}}{64}} \\ \\ \\

:\implies \sf{F_{2} =  \dfrac{144 \times 10^{(-1)}}{64}} \\ \\ \\

:\implies \sf{F_{2} =  2.25 \times 10^{(-1)}} \\ \\ \\

:\implies \sf{F_{2} =  0.225} \\ \\ \\

\boxed{\therefore \sf{F_{2} =  0.225\:N}} \\ \\ \\

Hence the force exerted by B on C is 0.225 N.

Now we know the formula for resultant force i.e,

\boxed{\bf{F_{r} = \sqrt{F_{1}^{2} + F_{2}^{2}}}}

Where :

  • Fr = Resultant force
  • F1 / F2 = Force exerted

Now by using the formula for resultant force and substituting the values in it, we get :

:\implies \bf{F_{r} = \sqrt{F_{1}^{2} + F_{2}^{2}}} \\ \\ \\

:\implies \bf{F_{r} = \sqrt{0.16 + 0.05}} \\ \\ \\

:\implies \bf{F_{r} = \sqrt{0.21}} \\ \\ \\

:\implies \bf{F_{r} = 0.46(approx.)} \\ \\ \\

\boxed{\therefore \bf{F_{r} = 0.46\:N}} \\ \\ \\

Therefore,

  • The force exerted (Resultant force) on the charge located at the 90° angle is 0.46 N
Similar questions