Math, asked by rishabharya2003, 1 year ago

Three horses are tethered with 7 m long ropes at the three corners of a triangular field having sides 20 m, 34m, and 42 m. Find the area of the plot.
i. Grazed by horses
ii. Remains ungrazed by horses

Answers

Answered by Anonymous
120

AnswEr :

  • Sides of Field = 20m, 34m, 42m
  • Three Horses with rope of 7m tethered at three corners of Triangular Field.

We will use Heron's Formula to find the Area of Triangle (let's say ∆ ABC)

Refrence of Image is in the Diagram :

\setlength{\unitlength}{1cm}\begin{picture}(6,8)\linethickness{0.075mm}\put(1, .5){\line(2, 1){3}}\put(4, 2){\line(-2, 1){2}}\put(2, 3){\line(-2, -5){1}}\put(.7, .3){$A$}\put(4.05, 1.9){$B$}\put(1.7, 2.95){$C$}\put(3.2, 2.5){$20 m$}\put(0.6,1.7){$34 m$}\put(2.7, 1.05){$42 m$}\end{picture}

First we will find the Semi Perimeter :

\longrightarrow \tt Semi \:Perimeter = \dfrac{Sum \:of \:Sides}{2} \\ \\\longrightarrow \tt s = \dfrac{a + b + c}{2} \\ \\\longrightarrow \tt s = \dfrac{20 + 34 + 42}{2}\\ \\\longrightarrow \tt s = \cancel\dfrac{96}{2} \\ \\\longrightarrow \blue{\tt s = 48}

Calculation of Area of Triangle :

\longrightarrow \tt Area_{\tiny \triangle ABC}= \sqrt{s(s - a)(s - b)(s - c)} \\ \\\longrightarrow \tt Area_{\tiny \triangle ABC}= \sqrt{48(48 - 20)(48 - 34)(48- 42)} \\ \\\longrightarrow \tt Area_{\tiny \triangle ABC}= \sqrt{48 \times28 \times14\times6}\\ \\\longrightarrow \tt Area_{\tiny \triangle ABC}= \sqrt{(6 \times 2\times4) \times(7 \times4) \times(7 \times2) \times6} \\ \\\longrightarrow \tt Area_{\tiny \triangle ABC}= \sqrt{(6 \times 6)(7 \times 7)(4 \times 4)(2 \times2)} \\ \\\longrightarrow \tt Area_{\tiny \triangle ABC}= 6\times7 \times 4 \times 2 \\ \\\longrightarrow \boxed{\orange{\tt Area_{\tiny \triangle ABC}= 336 \:{m}^{2}}}

Area of Triangular Field will be 336 .

\rule{300}{1}

I ) Area of Plot Grazed by Horses.

Now, if these animals are tied at the corners will make Sector i.e. (3 Sectors of Radius 7 m), So will Find the Area that Animals can actually Graze.

Area of Plot Grazed by Horses are :

\longrightarrow \tt Area = \dfrac{\angle A}{360\degree}\pi {r}^{2} + \dfrac{\angle B}{360\degree}\pi {r}^{2} + \dfrac{\angle C}{360\degree}\pi {r}^{2} \\ \\\longrightarrow \tt Area = \pi {r}^{2} \bigg(\dfrac{\angle A}{360\degree}+ \dfrac{\angle B}{360\degree} + \dfrac{\angle C}{360\degree} \bigg)\\ \\\longrightarrow \tt Area = \pi {r}^{2} \bigg(\dfrac{\angle A +\angle B +\angle C}{360\degree}\bigg) \\ \\\longrightarrow \tt Area = \pi {r}^{2} \bigg( \cancel\dfrac{180 \degree}{360\degree}\bigg) \\ \\\longrightarrow \tt Area = \dfrac{ \cancel{22}}{\cancel7} \times \cancel7\times 7\times \dfrac{1}{\cancel2}\\\\\longrightarrow \tt Area = 11 \times 7\\  \\ \longrightarrow \blue{\tt Area =77 \: {m}^{2}}

Horses can Graze 77 Area of Plot.

\rule{300}{2}

II ) Remains ungrazed by Horses.

↠ Ungrazed Area = Total – Grazed Area

↠ Ungrazed Area = 336m² – 77m²

Ungrazed Area = 259

Ungrazed Area of Plot will be 259 .

#answerwithquality #BAL

Answered by rajsingh24
63

\huge{\green{\underline{\red{\mathscr{ANSWER:-}}}}}

The area that can be grazed by the horse at each vertex is the area of the sector of radius 7 m at each vertex. 

To find that area we need to know the angle at each vertex.

We use the cosine rule in a triangle as we know the lengths of the sides.

AC² = AB² + BC² - 2 AB * BC * Cos B

20² = 34² + 42² - 2 * 34 * 42 * Cos B

Cos B = 0.88235   

  => B = 28.07⁰

AB² = AC² + BC² - 2 AC * BC * Cos C

34² = 42² + 20² - 2 * 42 * 20 * Cos C

Cos C = 0.6          => C = 53.13°

A = 180° - B - C = 98.80°

Area grazed by the horse at the vertex A = (π * 7²) * (98.80°/360°) m²

           = 42.247 m²

Area grazed by the horse at the vertex B =  (π * 7² * (28.07°/360°) m²

         = 12 m²

Area grazed by the horse at the vertex C = (π 7² * (53.13°/360°) m²

       = 22.718 m²

Total area of the triangle ABC can be found by Heron's formula as:

  s = semi perimeter = (AB+BC+CA)/2 =  48 m

area of ΔABC,

 \sqrt{s(s - a)(s - b)(s - c)}  \\  \sqrt{48 \times 6 \times 28 \times 14}  \\  = 336cm  {}^{2}

The area left ungrazed is = 336 - 22.718 - 12 - 42.247 = 259.035 m².

\huge{\purple{\underline{\pink{\mathscr{THANKS.}}}}}

Attachments:
Similar questions