Math, asked by Nidaaaa, 1 year ago

Three numbers are in a.p.and their sum is 15.if 1,4 and 19 be added to those numbers respectively.the numbers are in g.p find the numbers

Answers

Answered by jaysmito101
3

Step-by-step explanation:

let the numbers be a1,a2,a3 and the common difference be d

a1 = a2 - d

a3 = a2 + d

According to the given problem,

    a1 + a2 + a3 = 15

=> (a2 - d) + a2 + (a2 + d) = 15

=> 3 * a2 = 15

=> a2 = 5

now second part,

According to the question,

(a2 - d + 1), (a2 + 4), (a2 + d + 19) are in G.P.

therefore,

=>  (a2 + 4) / (a2 - d + 1) = (a2 + d + 19) / (a2 + 4)

=>  (a2 + 4)^2 = (a2 - d + 1) (a2 + d + 19)

=>  9^2 = (6 - d) (24 + d)

=>  81 = 144 + 6d - 24d - d^2

=>  d^2 - 18d + 63 =0

=>  d^2 + 21d - 3d + 63 = 0

=>  d (d + 21) - 3 (d + 21) = 0

=>  (d + 21) (d - 3) = 0

=>  d + 21 = 0 or d - 3 = 0

=>  d = -21 or d = 3

if d = -21 the a1 = 5 - (-21)

                         = 5 +21

                         = 26

if d = 3 the a1 = 5 - 3

                       = 2

Done!!!!!!

Similar questions