Math, asked by mukta846, 7 months ago

Three pipes A, B and C can fill a tank in 12 hours, 15 hours and 20 hours respectively. How long wou
three pipes take to fill the empty tank, if all of them are opened together?

Answers

Answered by EliteZeal
99

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Pipe A can fill the tank in 12 hours

 \:\:

  • Pipe B can fill the tank in 15 hours

 \:\:

  • Pipe C can fill the tank in 20 hours

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Time taken by three pipes to fill the empty tank, if all of them are opened together

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the time taken by three pipes to fill the empty tank be "x"

 \:\:

 \underline{\bold{\texttt{One hour work of Pipe A :}}}

 \:\:

 \sf \dfrac { 1 } { 12 }

 \:\:

 \underline{\bold{\texttt{One hour work of Pipe B :}}}

 \:\:

 \sf \dfrac { 1 } { 15 }

 \:\:

 \underline{\bold{\texttt{One hour work of Pipe C :}}}

 \:\:

 \sf \dfrac { 1 } { 20 }

 \:\:

 \underline{\bold{\texttt{One hour work of all three pipes opened together :}}}

 \:\:

 \sf \dfrac { 1 } { 12 } + \dfrac { 1 } { 15 } + \dfrac { 1 } { 20 }

 \:\:

 \sf \dfrac { 5 + 4 + 3 } { 60 }

 \:\:

 \sf \dfrac { \cancel {12} } { \cancel {60} }

 \:\:

 \sf \dfrac { 1 } { 5 }

 \:\:

 \underline{\bold{\texttt{x hour work of all three pipes opened together :}}}

 \:\:

 \sf \dfrac { 1 } { 5 } \times x

 \:\:

As we assumed that if all three pipes are opened for "x" hours they will fill the empty tank

 \:\:

So,

 \:\:

 \sf \dfrac { 1 } { 5 } \times x = 1

 \:\:

➨ x = 5 hours

 \:\:

  • Hence if all three pipes are opened together they will fill the empty tank in 5 hours
Answered by Ranveerx107
1

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Pipe A can fill the tank in 12 hours

 \:\:

  • Pipe B can fill the tank in 15 hours

 \:\:

  • Pipe C can fill the tank in 20 hours

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Time taken by three pipes to fill the empty tank, if all of them are opened together

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the time taken by three pipes to fill the empty tank be "x"

 \:\:

 \underline{\bold{\texttt{One hour work of Pipe A :}}}

 \:\:

 \sf \dfrac { 1 } { 12 }

 \:\:

 \underline{\bold{\texttt{One hour work of Pipe B :}}}

 \:\:

 \sf \dfrac { 1 } { 15 }

 \:\:

 \underline{\bold{\texttt{One hour work of Pipe C :}}}

 \:\:

 \sf \dfrac { 1 } { 20 }

 \:\:

 \underline{\bold{\texttt{One hour work of all three pipes opened together :}}}

 \:\:

 \sf \dfrac { 1 } { 12 } + \dfrac { 1 } { 15 } + \dfrac { 1 } { 20 }

 \:\:

 \sf \dfrac { 5 + 4 + 3 } { 60 }

 \:\:

 \sf \dfrac { \cancel {12} } { \cancel {60} }

 \:\:

 \sf \dfrac { 1 } { 5 }

 \:\:

 \underline{\bold{\texttt{x hour work of all three pipes opened together :}}}

 \:\:

 \sf \dfrac { 1 } { 5 } \times x

 \:\:

〚 As we assumed that if all three pipes are opened for "x" hours they will fill the empty tank 〛

 \:\:

So,

 \:\:

 \sf \dfrac { 1 } { 5 } \times x = 1

 \:\:

➨ x = 5 hours

 \:\:

  • Hence if all three pipes are opened together they will fill the empty tank in 5 hours
Similar questions
Math, 1 year ago