Physics, asked by Arshyan2626, 9 months ago

Three resistors R1 ohm, 4ohm and 8 ohm are connected series circuit . If the resultant resistance is 20ohms . Find the value of R1 .

Answers

Answered by Brâiñlynêha
15

Given :-

Three resistors are connected in a series

\sf \bullet R_1= ?\\ \\ \sf \bullet R_2= 4\ \Omega \\ \\ \sf\bullet R_3= 8 \Omega\\ \\ \sf \bullet  Resultant \ resistance(R_s) = 20 \Omega

To find

\sf \star R_1 = ?

◆We know that resistance in series

\boxed{\sf{R_s= R_1+R_2+R_3.\ ..\ ... +R_n}}

here ,

\sf R_s = The sum of their individual resistance.

Now put the given values !

\longmapsto\sf  20 \Omega=R_1+  4\Omega+ 8\Omega \\ \\ \longmapsto\sf 20\Omega = R_1+12\Omega\\ \\ \longmapsto\sf 20\Omega-12\Omega= R_1\\ \\ \longmapsto\sf 8\Omega= R_1\\ \\ \longmapsto\sf \ \ or \ R_1= 8\Omega

\bigstar{\boxed{\sf{R_1= 8\Omega}}}

Resistance in parallel

\boxed{\sf{\dfrac{1}{R_p}= \dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}....\ ..\ .. +\dfrac{1}{R_n}}}

Answered by Anonymous
10

\huge{\underline{\underline {\bf{\red{\ Answer:-}}}}}

\large\bold{\underline{\underline{\sf{\pink{GivEn:-}}}}}

\implies Three resistors connected in series:-

\ \ \ \ \ \ \ \ \ \bullet \sf R_1 → \ ?

\ \ \ \ \ \ \ \ \ \bullet \sf R_2 → \ 4 \Omega

\ \ \ \ \ \ \ \ \ \bullet \sf R_1 → \ 8 \Omega

\ \ \ \ \ \ \ \ \ \bullet resultant resistor  \sf R_s → \ 20 \Omega

\large\bold{\underline{\underline{\sf{\pink{To \; Find:-}}}}}

\implies \sf R_1 = ?

★ Now, Putting all values in formula:-

\large\bold{\underline{\boxed{\sf{\purple{ \sf R_s → \sf R_1 + \sf R_2 + \sf R_3..... \sf R_n }}}}}

\large\bold{\underline{\underline{\sf{\pink{20 \Omega → \sf R_1 + 4 \Omega + 8  \Omega}}}}}

\implies 20 \Omega → \sf R_1 \Omega + 12 \Omega

\implies 20 \Omega - 12 \Omega → \sf R_1 \Omega

\implies \large\bold{\underline{\boxed{\sf{\red{\dag \; 8 \Omega \; → \; \sf R_1 }}}}}

Related Formula :-

\implies Resistance in Parallel:-

\large\bold{\underline{\boxed{\sf{\purple{\dfrac{1}{ \sf R_p} → \dfrac{1}{ \sf R_1} + \dfrac{1}{ \sf R_2} + \dfrac{1}{ \sf R_3}....... \dfrac{1}{\sf R_n }}}}}}

____________________________

Similar questions