Math, asked by pundarakakshi2005, 1 year ago

Three traffic lights at three different road crossings change after every 48 seconds, 72
seconds and 108 seconds respectively. If they all change simultaneously at 8 hours, then at
what time will they again change simultaneously ?

Answers

Answered by priyagagrai38
3

Answer:

hey.. here is your answer

Step-by-step explanation:

L.C.M of 48, 72, 108 = 2 x 2 x 2 x 2 x 3 x 3 x 3 = 432 sec.

After 432 seconds, the lights change simultaneously.

432 second = 7 minutes 12 seconds

Therefore the time = 7 a.m. + 7 minutes 12 seconds

= 7:07:12 a.m.

hope you understand..

Answered by BrainlyPARCHO
3

 \large \green{  \fcolorbox{grey}{white}{ ☑ \:  \textbf{Verified \: answer}}}

If the traffic lights change simultaneously at 8 a.m, then they will change simultaneously again after the LCM of the duration i.e. 48 s, 72 s and 108 s.

LCM of these durations by prime factorisation

  • 48 = 2 × 2 × 2 × 2 × 3 = 2⁴ × 3
  • 72 = 2 × 2 × 2 × 3 × 3 = 2³ × 3²
  • 108 = 2 × 2 × 3 × 3 × 3 = 2² × 3³

LCM of 48, 72 and 108 is 2⁴ × 3³ = 432 seconds.

Hence, They will change after 432 seconds i.e. 7 minutes 12 seconds.

The traffic lights will change after:

  • 8 am + 7 minutes 12 seconds
  • 08 : 07 : 12 am
Similar questions