Math, asked by momiramandeepkaur06, 20 days ago

TI find the equation of the integral surface of the partial differential equation xp+yq=z, which passes through the curve x+y=1,yz=1

Answers

Answered by XxAnityaxX
4

Step-by-step explanation:

\huge{\fcolorbox{yellow}{red}{\large{\fcolorbox{blue}{pink}{\tiny{\fcolorbox{orange}{aqua}{ answer }}}}}}

\large{\underline{\underline{\textsf{\maltese{\red{answer}}}}}}

\huge \boxed {✭\red{Answer~}✭}

\red{Question}

\huge\boxed{\fcolorbox{red}{blue}{Answer}}

 \blue{ \Large{\boxed{ \tt{ \red {Answer }}}}}

\huge\red{\boxed{\orange{\mathcal{\overbrace{\underbrace{\fcolorbox{red}{pink}{\underline{\red{❥Question࿐}}}}}}}}}

\small\colorbox{lightgreen}{Verified answer}

 Questions \: Answers

\fbox\green{Verified}\fbox\pink{Answer}

\huge\mathtt\pink{Question}

•\huge\bigstar{\underline{{\red{A}{\pink{n}{\color{blue}{s}{\color{gold}{w}{\color{aqua}{e}{\color{lime}{r}}}}}}}}}\huge\bigstar•

\huge\mathbb\colorbox{black}{\color{white}{AnSwEr}}

\huge\bold{\textbf{\textsf{{\color{blue}{Question}}}}}

Answered by KaurSukhvir
3

Answer:

The equation of integral surface for the given partial differential equation is (x+y)²=yz.

Step-by-step explanation:

The given partial differential equation is:

                xp+yq=z

The Lagrange's differential equation:

              \frac{dx}{x} =\frac{dy}{y}=\frac{dz}{z}

From the first two parts:

on integration,  \frac{dx}{x}=\frac{dy}{y} \\ \\ \int\limits \frac{1}{x}  \, dx  =\int\limits \frac{1}{y}  \, dy

                     lnx=lny+lnc_{1} \\ lnc_{1}=lnx-lny\\ c_{1}  =\frac{x}{y}                        ...................(1)

From the next two parts:

                 \frac{dy}{y}=\frac{dz}{z} \\ \\ \int\limits \frac{1}{y}  \, dy  =\int\limits \frac{1}{z}  \, dz

               lny=lnz+lnc_{2} \\ lnc_{2}=lny-lnz\\ c_{2}  =\frac{y}{z}                        .................(2)

The given curve:  x+y=1, yz=1

Consider that  x=t   therefore   y=1-x=1-t

Put the value of y in eq. yz=1  we get, z=\frac{1}{y}=\frac{1}{1-t}  

Put the value of x and y in eq. (1)

we get        c_{1}=\frac{t}{(1-t)}

Put the value of y and z in eq. (2)

we get        c_{2}=(1-t)^{2}

We need eq. only in terms of coefficients

Consider that       c_{2}  (c_{1} +1)^{2} =(1-t)^{2}(\frac{t}{1-t} +1)^{2}    

                            c_{2}  (c_{1} +1)^{2} =(1-t)^{2}(\frac{t+1-t}{1-t} )^{2}=(1-t)^{2}\frac{1}{(1-t)^{2}}  \\ \\ c_{2}  (c_{1} +1)^{2}=1..........(3)

Put the values of c₁ and c₂ in eq. (3),

                    (\frac{y}{z} )(1+\frac{x}{y} )^{2}=1 \\\\  (\frac{y}{z} )(\frac{x+y}{y} )^{2}=1\\(x+y)^{2}=yz

Therefore the integral surface equation for PDE is (x+y)^{2}=yz  which passed through a curve.

                           

                                                   

Similar questions