Time period of a simple harmonic
motion is ts. If the velocity of the particle in
equilibrium position is 10 cm/s, then find the
length of oscillation (from one end to the other
end) and find the velocity of the particle at a
distance of 3 cm from the equilibrium.
Answers
Answer:
Using the relation
Using the relation
v=w × route(A2−x2) [v is the velocity as displacement x, A :Amplitude]
From given
(i) when x=8,v=33=w route(A2−64 )........... (1)
........... (1)(ii) when x=6,v=4
........... (1)(ii) when x=6,v=44=w route(A2−36) .......... (2)
.......... (2)dividing (1)÷(2) gives
.......... (2)dividing (1)÷(2) gives(43)2=A2−36A2−64⇒A2=716×64−9×36=100
.......... (2)dividing (1)÷(2) gives(43)2=A2−36A2−64⇒A2=716×64−9×36=100⇒A=10 cm
.......... (2)dividing (1)÷(2) gives(43)2=A2−36A2−64⇒A2=716×64−9×36=100⇒A=10 cmPutting A in (1) gives
.......... (2)dividing (1)÷(2) gives(43)2=A2−36A2−64⇒A2=716×64−9×36=100⇒A=10 cmPutting A in (1) gives3=w102−64⇒w=63=21 rad/s
.......... (2)dividing (1)÷(2) gives(43)2=A2−36A2−64⇒A2=716×64−9×36=100⇒A=10 cmPutting A in (1) gives3=w102−64⇒w=63=21 rad/s∴ Time period ocsillaion
.......... (2)dividing (1)÷(2) gives(43)2=A2−36A2−64⇒A2=716×64−9×36=100⇒A=10 cmPutting A in (1) gives3=w102−64⇒w=63=21 rad/s∴ Time period ocsillaion T=w
I HOPE ITS HELPFUL TO YOU.