to find the ratio in which point p (k,7) devides the segment joining A (8,9) nad (1,2) . Please Answer
Answers
Answered by
0
Answer:
So, the required ratio is 2 : 5.
Answered by
0
Using the section formula, if a point (x,y) divides the line joining the points (x
1
,y
1
) and (x
2
,y
2
) in the ratio m:n, then
(x,y)=(
m+n
mx
2
+nx
1
,
m+n
my
2
+ny
1
)
Let the ratio be x: 1.
Using the section formula,
k=
x+1
1x+1×8
⇒kx+k=x+8(1)
Also,7=
x+1
2x+9
⇒7x+7=2x+9
⇒5x=2
⇒x=
5
2
So, the required ratio is 2 : 5.
Putting this value of x in (1) we get
k(
5
2
+1)=
5
2
+8
⇒
5
7
k=
5
42
⇒k=6
Solve any question of Coordinate Geometry with:-sahu harsh brainly
Similar questions