Chemistry, asked by mapatel81091, 10 months ago

to prepare 0.2m na2co3 in 250 ml of distilled
H₂O.​

Answers

Answered by subharthi2006
0

Answer:

Explanation:

.

6. Q / From this solution prepare 0.05 N , and 0.02 N solution in 250 ml distill water ? Wt. = eq wt. x N X V (ml) 1000 To prepare dilute solution from stock solution , this law must be used :- Dilution law is :- (N x V)1 = (N x V)2 Where (1) refer to the concentrated solution and (2) refer to the diluted solution. To find the normality of concentrated solutions (for liquid only) this law must be used:- N = density or spicific gravity x wt % x 1000 eq.wt of solution Or : density or spicific gravity x wt % x 1000 M = MWt. of solution Q / prepare 2N solution in 250 ml volumetric flask from 5N of HCl stock solution . Q / prepare 500 ml , 5N H2SO4 solution from original concentrated solution. . Preparation of 0.1 M Na2CO3 solution in 250 ml D.W Weight 2.65 gm of Na2CO3 , transfer it into a beaker. Add 100ml of D.W ( mix using a glass stirrer ).Transfer the solution into a 250 ml volumetric flask of, add water to the mark.

7. ppm = wt of solute x 10 6 wt of solution ppm = mg (solute) 10 6 mg water mg (solute) L (solution) = mole of solute = Wt (gram) Molecular weight (g / mole) eq.wt of solute = Molecular weight (g / mole) no of H + In acids no of OH - in base no of cation charge in salts So : 1M Na2CO3 = 2N Na2CO3 part per million (PPm ) The concentration of very diluted solutions ,It’s the number of mg of salt dissolved in one liter solution. ppm = wt of solute x 10 6 wt of solution ppm = mg (solute) 10 6 mg water mg (solute) L (solution) =

8. Buffer solution Any solution that contains both a weak acid and it’s weak base, has the ability to absorb small amounts of either a strong acid or strong base are added they are neutralized by the weak base , while small quantities of a strong base are neutralized by the weak acid, such solution are said to be buffer because they resist significant change in the PH .The PH value is determined by a PH meter. Using of indicators in a PH estimation:- Principle:- A set of buffer solution of known PH is prepared form citric acid and disodium monohydrogen phosphate. The color of the indicator in an unknown solution is compared with the color of indicator in these buffer solution , assuming that the concentration of the indicator in all solution is the same. The buffer solution in which the color of the indicator is the same as color of the indicator in the unknown solution has the same PH as this solution.

9. Procedure :- Fill one burette with citric acid solution 0.1 molar and a second burette with 0.2 molar disodium monohydrogen phosphate ( called solution A and B respectively) . Use the following table in preparing a set of buffer solutions:- No PH ml of solution A ml of solution B 1 4.2 5.86 4.14 2 4.4 5.59 4.41 3 4.6 5.33 4.68 4 4.8 5.07 4.93 5 5 4.85 5.15 6 5.2 4.64 5.36 7 5.4 4.43 5.58 8 5.6 4.2 5.8 9 5.8 3.96 6.03 10 6.0 3.69 6.32 The way to work is follows:- 1- Label 10 test tube from 1 to 10 , into number 1 run 5.86 ml of solution A and 4.14 ml of solution B , mix well, fill the other test tube in a similar way , using the volumes of A and B mentioned in the table. In this way we obtain a set of buffer solution (10 ml of each ) having a PH from 4.2 to 6.0 2- Use methyl red as an indicator ,add to each 10 ml buffer solution above, 5 drops of the methyl red indicator solution .(PH rang 4.4 to 6.0 ),mix the contents of the tubes well. 3- Bring into a test tube 10 ml of a 0.05 N ammonium chloride solution ,add 5 drops of the indicator solution and mix .compare the color produced with the color in the test of buffer solution.

10. 4- Using a pipette bring into a flask 10 ml 0.1 N acetic acid solution and 10 ml 0.1 N sodium acetate solution .mix then ,bring 10 ml of this buffer solution into test tubes ,add 5 drops indicator solution ,and make an estimation of PH of this buffer solution as before. Preparation of a buffer solution with PH = 4.6 Mix 5 ml of 0.2 M acetic acid with 5 ml of 0.2 M sodium acetate.(mix using a stirrer). Preparation of a buffer solution with PH = 7 Mix 17 ml of 0.02 M Na2HPO4.2H2O with 3.9 ml of citric acid . Preparation of a buffer solution with PH = 9.4 Mix 5 ml of NaOH , 0.1N with 16.6 ml of 0.15 M Na2HPO4.2H2O

Similar questions