To proove
tan2a-tana=tanasec2a
Answers
Answered by
1
hey maye:
prove here
tan (2a) - tan a = tan (a ) sec (2a)
proof:-
Take L.H.S.
= tan 2a - tan a
= tan (a + a )- tan a
= (tan a + tan a)/(1- tan a × tan a) - tan a
= [2tan a/ (1- tan ^2 a]- tan a
= tan a [ 2/(1 - tan ^2 a) - 1]
=tan a[ 2 - 1 + tan^2 a]/(1 - tan ^2 a)
= tan a [ (1+ tan ^2 a )/1- sin ^2 a /cos^2 a)]
= tan a [ sec^2 a /(cos^2 a - sin^2 a)/cos^2 a
= tan a [ (sec^2 / cos 2 a)] × cos ^2 a
= tan a /cos2a
= tan a sec 2a.
= R.H.S.
uses sum formula
1) sec^2 a - tan^2 a = 1
2) cos^2 a - sin^2 a = cos 2a.
3) cos a = 1/sec a.
i hopes its helps u.
please follow me!!
@abhi.
Similar questions