to prove a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
Answers
Answered by
3
here is your answer with clear picture here you just have to prove L.H.S.=R.H.S. so take R.H.S. and just do multiplication
Attachments:
Answered by
2
first of all you should be know that
first of all you should be know that formula
a³ + b³ + c³ -3abc = ( a + b + c)(a² + b² + c² - ab - bc - ca) .
LHS = a³ + b³ + c³ - 3abc
= ( a³ + b³ ) + c³ - 3abc
= ( a + b)³ - 3ab( a + b) +c³ - 3abc
= ( a + b)³ - 3a²b - 3ab² + c³ - 3abc
= {(a + b)³ + c³ } -3a²b - 3ab² - 3abc
= ( a + b + c)³ - 3c(a + b) ( a + b + c ) -3ab(a + b+ c)
= ( a + b + c){ ( a + b + c)² -3c(a +b) - 3ab }
= ( a + b + c){ a² + b² + c² +2ab +2bc+ 2ca -3ca - 3bc - 3ab }
= ( a + b + c)( a² + b² + c² - ab - bc -ca) = RHS
LHS = RHS
::::::::::::::Hence, Proved:::::::::::
Similar questions