Math, asked by sunitapawase78, 10 months ago

to prove basic proportionality theorem without construction​

Answers

Answered by omkarshivajiraut
0

Basic Proportionality Theorem:

Basic Proportionality Theorem states that "If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".

Answered by nilesh102
2

hi mate,

PROOF OF BPT

Given: In ΔABC, DE is parallel to BC

Line DE intersects sides AB and AC in points D and E respectively.

To Prove:

AD AE

----- = -----

DB AC

Construction: Draw EF ⟂ AD and DG⟂ AE and join the segments BE and CD.

Proof:

Area of Triangle= ½ × base × height

In ΔADE and ΔBDE,

Ar(ADE) ½ ×AD×EF AD

----------- = ------------------ = ------ .....(1)

Ar(DBE) ½ ×DB×EF DB

In ΔADE and ΔCDE,

Ar(ADE) ½×AE×DG AE

------------ = --------------- = ------ ........(2)

Ar(ECD) ½×EC×DG EC

Note that ΔDBE and ΔECD have a common base DE and lie between the same parallels DE and BC. Also, we know that triangles having the same base and lying between the same parallels are equal in area.

So, we can say that

Ar(ΔDBE)=Ar(ΔECD)

Therefore,

A(ΔADE) A(ΔADE)

------------- = ---------------

A(ΔBDE) A(ΔCDE)

Therefore,

AD AE

----- = -----

DB AC

Hence Proved.

Attachments:
Similar questions