Math, asked by sanjokgurung217, 1 year ago

To Prove :tan-1x +tan-1(2x/1-x^2)=(3x-x^3/1-3x^2)

Answers

Answered by Swarup1998
12
➡HERE IS YOUR ANSWER⬇

L.H.S.
 =  {tan}^{ - 1} x +  {tan}^{ - 1}  \frac{2x}{1 -  {x}^{2} }  \\  \\  =  {tan}^{ - 1} ( \frac{x +  \frac{2x}{1 -  {x}^{2} } }{1 - x. \frac{2x}{1 -  {x}^{2} } } ) \\  \\  =  {tan}^{ - 1}  (\frac{ \frac{x(1 -  {x}^{2}) + 2x }{1 -  {x}^{2} } }{ \frac{(1 -  {x}^{2}) - 2 {x}^{2}  }{1 -  {x}^{2} }  } ) \\  \\  =  {tan}^{ - 1} ( \frac{3x -  {x}^{3} }{1 - 3 {x}^{2} } )
=RHS (Proved).

■] IMPORTANT FORMULA [■

 {tan}^{ - 1} x +  {tan}^{ - 1} y \\  \\  =  {tan}^{ - 1}  (\frac{x + y}{1 - xy})


⬆HOPE THIS HELPS YOU⬇
Similar questions