Math, asked by divyaag29041992, 1 year ago

To the nearest tenth, find the perimeter of ∆ABC with vertices A(2,4), B(-2,1) and C(2,1).

Answers

Answered by Debarghya
1
I may not be correct
Plez check it
Attachments:
Answered by pinquancaro
1

Answer:

The perimeter of ∆ABC is 12 units.

Step-by-step explanation:

Given : ∆ABC with vertices A(2,4), B(-2,1) and C(2,1).

To find : The perimeter of the triangle ABC?

Solution :

A=(2,4)=(x_a,y_a)

B=(-2,1)=(x_b,y_b)

C=(2,1)=(x_c,y_c)

Perimeter of ∆ABC: P=AB+BC+AC

AB=\sqrt{(x_b-x_a)^2+(y_b-y_a)^2}

AB=\sqrt{(-2-(2))^2+(1-4)^2}

AB=\sqrt{(-2-2)^2+(-3)^2}

AB=\sqrt{(-4)^2+9}

AB=\sqrt{16+9}

AB=\sqrt{25}

AB=5

BC=\sqrt{(x_c-x_b)^2+(y_c-y_b)^2}

BC=\sqrt{(2-(-2))^2+(1-1)^2}

BC=\sqrt{(2+2)^2+(0)^2}

BC=\sqrt{(4)^2+0}

BC=\sqrt{16+0}

BC=\sqrt{16}

BC=4

AC=\sqrt{(x_c-x_a)^2+(y_c-y_a)^2}

AC=\sqrt{(2-(2))^2+(1-4)^2}

AC=\sqrt{(0)^2+(-3)^2}

AC=\sqrt{(0)^2+9}

AC=\sqrt{0+9}

AC=\sqrt{9}

AC=3

Perimeter=AB+BC+AC

P=5+4+3

P=12

Therefore, The perimeter of ∆ABC is 12 units.

Similar questions