Math, asked by IIMasterQuestionerII, 23 hours ago

Today's Question :-
\looparrowright {\sin}^{2}30° \: { \cos}^{2}45° + 4 {\tan}^{2}30° + \frac{1}{2} { \sin}^{2}90°
❍ Solve it no direct answers.
❍ For Moderator, Maths Aryabhatta and Best Users.
❍ All the best!!!

Answers

Answered by IIMrVelvetII
97

⇝ Equation :-

\small{{\sin}^{2}30° \: { \cos}^{2}45° + 4 {\tan}^{2}30° + \frac{1}{2} { \sin}^{2}90°}

❍ Solution :-

We know that,

⇝ sin 30° =  \frac{1}{2}

⇝ cos 45° =  \frac{1}{\sqrt{2}}

⇝ tan 30° =  \frac{1}{\sqrt{3}}

⇝ sin 90° = 1

Now, putting values in the equation, we get,

\sf→ {(\frac{1}{2})}^{2} \times{(\frac{1}{\sqrt{2}})}^{2} + 4{(\frac{1}{\sqrt{3}})}^{2} + \frac{1}{2}{(1)}^{2}

\sf→ \frac{1}{4} \times \frac{1}{2} + \frac{4}{3} + \frac{1}{2}

\sf→ \frac{1}{8} + \frac{4}{3} + \frac{1}{2}

⇝ LCM (8, 3, and 2)= 24

\sf→ \frac{(1 \times 3) + (4 \times 8) + (1 \times 12)}{24}

\sf→ \frac{3 + 32 + 12}{24}

\sf→ \frac{47}{24}

Hence, sin²30° cos²45° + 4tan²30° +  \frac{1}{2}sin²90° is equal to 47/24.

Answered by Saby123
86

Solution :

sin² 30 cos² 45 + 4 tan² 30 + ½ sin² 90

Let sin 30 = a , cos 30 = b and cos 45 = c .

sin 90 is 1

>> a² cos 45 + 4(a²/b²) + ½

>> (a²/√2) + 4(a²/b²) + ½

sin 30 = ½ = a

&

cos 30 = √3/2 = b

a²/b²

>> (1/4) / (3/4)

>> ⅓

>> (1/4√2) + 4×⅓ + ½

>> 1/(4√2) + (4/3) + ½

>> [3 + 16√2 + 6√2 ] / (12√2)

>> [ 22√2+3]/(12√2)

>> (22/12) + 1/(4√2)

>> 11/6 + (√2/8)

>> 1 ⅚ + ⅛√2 .

This is the required answer .

_____________________________________

Additional Information :

sin ²theta + cos ²theta = 1

tan²theta + 1 = sec² theta

cot²theta + 1 = cosec² theta

 \large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

_____________________________________

 \setlength{\unitlength}{7mm}\begin{picture}(0,0)\thicklines\put(0,0){\vector(1,0){6}}\put(0,0){\vector(-1,0){6}}\put(0,0){\vector(0,1){6}}\put(0,0){\vector(0,-1){6}}\put( -3,4){\sf\huge S}\put(3,4){\sf\huge A}\put( -3, - 2){\sf\huge T}\put(3, - 2){\sf\huge C}\put( -4.5,2.5){\sf\large Sin is positive}\put(1.5,2.5){\sf\large All are positive}\put( -4.5, - 3){\sf\large Tan is positive}\put(2, - 3){\sf\large Cos is positive}\put( -4.1,1.5){\sf Cos and Tan }\put( -4.1,1){\sf are negative}\put( -4.1, -4){\sf Sin and Cos}\put( -4.1, - 4.5){\sf are negative}\put(2.4, - 4){\sf Sin and Tan}\put(2.4, - 4.5){\sf are negative}\end{picture}

_____________________________________

Similar questions