Math, asked by mukesh190303, 7 months ago

tomorrow is my jee
someone help​

Attachments:

Answers

Answered by shadowsabers03
8

The complex number \omega is given as,

\longrightarrow 2\omega+1=z\quad\quad\dots(i)

where z=\sqrt{-3}.

\longrightarrow 2\omega+1=\sqrt{-3}

Squaring both sides,

\longrightarrow (2\omega+1)^2=(\sqrt{-3})^2

\longrightarrow 4\omega^2+4\omega+1=-3

\longrightarrow 4\omega^2+4\omega+4=0

\longrightarrow \omega^2+\omega+1=0\quad\quad\dots(1)

Multiplying \omega-1 to both sides,

\longrightarrow(\omega^2+\omega+1)(\omega-1)=0

\longrightarrow\omega^3-1=0\quad\quad[\because\,a^3-b^3=(a-b)(a^2+ab+b)]

\longrightarrow\omega^3=1\quad\quad\dots(2)

Then,

\longrightarrow\left|\begin{array}{ccc}1&1&1\\1&-\omega^2-1&\omega^2\\1&\omega^2&\omega^7\end{array}\right|=3k

\longrightarrow\left|\begin{array}{ccc}1&1&1\\1&-(\omega^2+1)&\omega^2\\1&\omega^2&(\omega^3)^2\cdot\omega\end{array}\right|=3k

From (1) and (2),

\longrightarrow\left|\begin{array}{ccc}1&1&1\\1&\omega&\omega^2\\1&\omega^2&\omega\end{array}\right|=3k

Performing the operations R_2\to R_1-R_2 and R_3\to R_1-R_3,

\longrightarrow\left|\begin{array}{ccc}1&1&1\\0&1-\omega&1-\omega^2\\0&1-\omega^2&1-\omega\end{array}\right|=3k

Evaluating the determinant,

\longrightarrow(1-\omega)^2-(1-\omega^2)^2=3k

\longrightarrow(1-\omega+1-\omega^2)(1-\omega-1+\omega^2)=3k

\longrightarrow(2-(\omega^2+\omega))(\omega^2-\omega)=3k

From (1),

\longrightarrow(2-(-1))(\omega^2-\omega)=3k

\longrightarrow3(\omega^2-\omega)=3k

\longrightarrow\omega^2-\omega=k

\longrightarrow\omega^2+\omega+1-2\omega-1=k

From (1),

\longrightarrow0-(2\omega+1)=k

From (i), we get,

\longrightarrow\underline{\underline{k=-z}}

Hence (4) is the answer.


amitkumar44481: Awesome :-)
Similar questions