Math, asked by BrainlyIshu, 15 days ago

Topic - Height And Distances
\bf \maltese \: \: Moderators 
\bf \maltese \: \:Brainly \: Stars
\bf \maltese \: \:Best \: Users 

P and Q are two point observed from the top of a building 10√3 m hight . if the angleof depression of the point are complementry and PQ = 20m. Find the distance of P from the buliding .

✏ No Spam

✏ Best Answer Required ​

Answers

Answered by SparklingBoy
207

\large \bf \clubs \: Question :-

P and Q are two point observed from the top of a building 10√3 m height . If the angle of depression of the point are complementry and PQ = 20m , then the distance of P from the buliding is (Given P is farther point)

-----------------------

\large \bf \clubs \:  Given :-

  • P and Q are two point observed from the top of a building

  • Height of Building 10√3 m .

  • The angle of depression of the point are complementry

  • Distance PQ = 20m

  • P is father Point

-----------------------

\large \bf \clubs \:   To  \: Find :-

  • The Distance of the P from Building .

-----------------------

\large \bf \clubs \: Answer :-

Distance of point P from building is 30m.

-----------------------

\large \bf \clubs \:Solution:-

As the angles are complementary for their sum must be 90°.

According to the Attached Figure:

\large \bf In \: \triangle \: SRQ

\sf \tan(90 - x) = \dfrac{10 \sqrt{3} }{y} \\ \\ \bf :\longmapsto cot \: x = \frac{10 \sqrt{3} }{y} \: \: \: \:. \: . \: . \: (i)

Now ,

\bf \large In \: \triangle \: SRP

\bf tan \: x = \dfrac{10 \sqrt{3} }{y + 20} \: \: \: \: . \: .\: . \: (ii)

Mulyiplying (i) and (ii) We get,

 \sf \tan x. \cot x = \dfrac{10 \sqrt{3}}{y} \times \frac{10 \sqrt{3} }{20 + y} \\ \\ :\longmapsto \sf 1 = \frac{300}{y(y + 20)} \\ \\ :\longmapsto \sf1 = \frac{300}{y {}^{2} + 20y} \\ \\ \bf :\longmapsto y {}^{2} + 20y - 300 = 0 \\ \\ :\longmapsto \sf y {}^{2} - 10y + 30y - 300 = 0 \\ \\ :\longmapsto \sf y(y - 10) + 30(y - 10) = 0 \\ \\ :\longmapsto  \sf(y - 10)(y + 30) = 0 \\ \\ \large \sf \purple{ :\longmapsto \underline {\boxed{{\bf y = 10 \: \: or \: \: y = - 30 } }}}

As y is distance So it can't be Negative

Hence,

\Large\purple{ :\longmapsto \underline {\boxed{{\bf y = 10m} }}}

So,

Distance of point P from building

= 10 + 20 meters

That is

\pink{ \LARGE \mathfrak{Distance=30m}}

-----------------------

Attachments:
Answered by MяMαgıcıαη
153

Given :

\:

  • P and Q are two points observed from the top of a building 10√3 m high. if the angle of depression of the point are complementary and PQ = 20m.

\:

To Find :

\:

  • Distance of P from the building?

\:

Solution :

\:

  • Let the building be RS and ∠P be x. Also, let distance b/w building and point Q be m meter. So, distance b/w building and point P is (m + 20) meter. We know that ∠P + ∠Q = 90° (It is given in the Question that angles are complementary). Therefore, ∠Q = 90° - x.

\:

Things to know before solving :

\:

  • \begin{cases} & \bf{\red{tan\:\theta = \dfrac{Perpendicular}{Base}}} \\ \\ \\ & \bf{\orange{tan(90^{\circ} - \theta) = cot\:\theta}} \\ \\ \\ & \bf{\green{tan\:\theta\:.\:cot\:\theta = 1}} \end{cases}

\:

  • So, let's solve it! \red{\clubsuit}

\:

In SRQ :

\\ :\implies\:\sf tan(90^{\circ} - x) = \dfrac{SR}{RQ}

\\ :\implies\:\bf\pink{cot\:x = \dfrac{10\sqrt{3}}{m}} \:\dashrightarrow\:\blue{Eq^{n}\:(1)}

\:

In SRP :

\\ :\implies\:\bf\blue{tan\:x = \dfrac{10\sqrt{3}}{m + 20}} \:\dashrightarrow\:\pink{Eq^{n}\:(2)}

\:

Multiplying Eqⁿ (1) and Eqⁿ (2) :

\\ :\implies\:\sf tan\:x\:.\:cot\:x = \dfrac{10\sqrt{3}}{m + 20}\:\times\:\dfrac{10\sqrt{3}}{m}

\:

  • We know that, tan θ . cot θ = 1.

\:

Therefore,

\\ :\implies\:\sf \dfrac{10\sqrt{3}}{m + 20}\:\times\:\dfrac{10\sqrt{3}}{m} = 1

\\ :\implies\:\sf \dfrac{10\:\times\:10\:{(\sqrt{3})}^{2}}{m(m + 20)} = 1

\\ :\implies\:\sf \dfrac{100\:\times\:3}{(m\:\times\:m) + (m\:\times\:20)} = 1

\\ :\implies\:\sf \dfrac{300}{m^2 + 20m} = 1

\\ :\implies\:\sf 300 = m^2 + 20m

\\ :\implies\:\sf m^2 + 20m - 300 = 0

\:

Splitting the middle term :

\\ :\implies\:\sf m^2 + (30 - 10)m - 300 = 0

\\ :\implies\:\sf m^2 + 30m - 10m - 300 = 0

\\ :\implies\:\sf m(m + 30) - 10(m + 30) = 0

\\ :\implies\:\sf (m + 30)\: (m - 10) = 0

\\ :\implies\:\sf m + 30 = 0\:\:or\:\: m - 10 = 0

\\ :\implies\:\sf m = 0 - 30\:\:or\:\: m = 0 + 10

\\ :\implies\:\underline{\boxed{\bf{\purple{m = -30\:\:or\:\: m = 10}}}}\:\bigstar

\:

  • m is the distance. So, it can't be negative!

  • Therefore, distance b/w the building and point Q is 10 m.

\:

Hence,

\:

  • Distance b/w building and point P = m + 20 = 10 + 20 = 30.

\:

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\:

  • Therefore, distance of P from the building is 30 m.

\:

Note :

\:

  • Diagram is in the attachment! \red{\clubsuit}

\:

━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions