Math, asked by rohansehrawat7533, 1 year ago

Transform the equation 3x + 2y + 12 = 0 into normal form

Answers

Answered by akomiyamoi
0
normal form
3x + 2y = -12
now ,

  \sqrt{(a) {}^{2} }  + (b) {}^{2}  \\  \sqrt{9 +4 }   \\  \sqrt{13}  \\
now dividing the both sides by root 13 we get
 \frac{3x}{ \sqrt{13} }  +  \frac{2y}{\sqrt{13} }  =  \frac{ - 12}{ \sqrt{13} }  \\  \\ x \times  \frac{3}{ \sqrt{13} }  + y \times  \frac{3}{ \sqrt{13} }  =  \frac{ - 12}{\sqrt{13} }  \\  \\ x \: cos  \alpha  + y \: sin \alpha  = p

where cos
 \cos\alpha  =  \frac{3}{ \sqrt{13} }  \\  \sin( \alpha ) =  \frac{2}{\sqrt{13} }   \\ p =  \frac{ - 12}{\sqrt{13} }
Similar questions