Math, asked by Abhilash1412, 8 months ago

Transform the equation x y    2 0 into slope intercept form, intercept form and
Normal form.

Answers

Answered by MaheswariS
10

\underline{\textsf{Given:}}

\textsf{Line is x+y-2=0}

\underline{\textsf{To find:}}

\textsf{Slope intercept form, Intercept form and Normal form of the line}

\underline{\textsf{Solution:}}

\underline{\textsf{Slope intercept form:}}

\mathsf{x+y-2=0}

\textsf{This can be written as}

\mathsf{y=-x+2}

\textsf{This equation is of the form y=mx+c}

\underline{\textsf{Intercept form:}}

\mathsf{x+y-2=0}

\textsf{This can be written as}

\mathsf{x+y=2}

\textsf{Divide bothsides by 2}

\mathsf{\dfrac{x}{2}+\dfrac{y}{2}=1}

\textsf{This equation is of the form}\;\mathsf{\dfrac{x}{a}+\dfrac{y}{b}=1}

\underline{\textsf{Normal form:}}

\mathsf{x+y-2=0}

\textsf{This can be written as}

\mathsf{x+y=2}

\textsf{Divide bothsides by}\;\mathsf{\sqrt{2}}

\mathsf{\dfrac{x}{\sqrt{2}}+\dfrac{y}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}}

\mathsf{x\;\dfrac{1}{\sqrt{2}}+y\;\dfrac{1}{\sqrt{2}}=\sqrt{2}}

\mathsf{x\;cos45^{\circ}+y\;sin45^{\circ}=\sqrt{2}}

\textsf{This equation is of the form}\;\mathsf{x\;cos\alpha+y\,sin\alpha=p}

Find more:

Reduce the equation root 3x+y+2=0 to 1)slope intercept form 2)intercept form and 3) normal form

https://brainly.in/question/2754095

Similar questions