Triangle ABC, AB=AC, and a bisector angle B and angle C intersect at O ,if M is a point BO produces proved that ABC=MOC
Answers
Answered by
13
"In ABC triangle, by angle sum property we get
x + 2 + ∠A = 180°
⇒ x + y + (∠A) = 90°
⇒ x + y = 180° – (∠A) à
In ΔBOC, we have
x + y + ∠MOC = 180°
180° – (∠A/2) + ∠MOC = 180° [From (1)]
∠MOC = 180° – 180° + (∠A)
∠MOC = 0° + (∠A)
"
Answered by
4
x + 2 + ∠A = 180°
⇒ x + y + (∠A) = 90°
⇒ x + y = 180° – (∠A) à
In ΔBOC, we have
x + y + ∠MOC = 180°
180° – (∠A/2) + ∠MOC = 180° [From (1)]
∠MOC = 180° – 180° + (∠A)
∠MOC = 0° + (∠A)
"
Similar questions