Math, asked by Degyanshi, 9 months ago

triangle ABC has side AB =7.5 , AC=6.5cm and BC=7cm on the base of BC. a parallelogram is DBCE of same area as that of triangle ABC is constructed find the height DF of the parallelogram ​

Answers

Answered by tyrbylent
7

Answer:

3 cm

Step-by-step explanation:

h = 3 cm

Attachments:
Answered by silentlover45
24

\underline\mathfrak\pink{Given:-}

  • ∆ ABC has sides AB = 7.5 cm, AC = 6.5 cm and BC = 7 cm.

\large\underline\mathfrak{To \: find:-}

  • Find the height of the parallelogram ....?

\large\underline\mathfrak\pink{Solutions:-}

Area of ∆ABC

The sides of a triangle are:-

  • AB = 7.5 cm
  • AC = 6.5 cm
  • BC = 7 cm

\: \: \: \: \: \therefore \: \: Area \: \: of \: \: triangle \: \: by \: \: heroes's \: \: formula:-

\: \: \: \: \:  \sqrt{s \: (s \: - \: a) \: (s \: - \: b) \: (s \: - \: c)}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{a \: + \: b \: + \: c}{2}

  • a ⇢ 7.5 cm

  • b ⇢ 6.5 cm

  • c ⇢ 7 cm

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{{7.5} \: + \: {7} \: + \: {6.5}}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{21}{2}

\: \: \: \: \: \leadsto \: \: S \: \: = \: \: {10.5}

\: \: \: \: \: \therefore \: \: \: Area \: \: of \: \: triangular \: \: field:-

\: \: \: \: \: \leadsto \: \: \sqrt{{10.5} \: ({10.5} \: - \: {7.5}) \: ({10.5} \: - \: {7}) \: ({10.5} \: - \: {6.5})}

\: \: \: \: \: \leadsto \: \: \sqrt{{10.5} \: \times \: {(3)} \:  \times \: {(3.5)} \: \times  \: {(4)}}

\: \: \: \: \: \leadsto \: \: \sqrt{441}

\: \: \: \: \: \leadsto \: \: {21} \: {cm}^{2}

\: \: \: \: \: \: \: \: Area \: \: of \: \: triangle \: \: \leadsto \: \: {96.82} \: {cm}^{2}

Now,

\: \: \: \: \: \: \: \: Area \: \: of \: \: parallelogram \: \: BCED \: \: = \: \: Base \: \times \: height

\: \: \: \: \: \: \: \: \leadsto \: \: BC \: \: \times \: \: DF

\: \: \: \: \: \: \: \: \leadsto \: \: {7} \: \: \times \: \: DF

\: \: \: \: \: \: \: \: Area \: \: of \: \: \triangle \: ABC \: \: = \: \: Area \: \: of \: \: parallelogram \: \: BCED

\: \: \: \: \: \: \: \: \leadsto \: \: {21} \: \: = \: \: {7} \: \: \times \: \: DF

\: \: \: \: \: \: \: \: \leadsto \: \: {DF} \: \: = \: \: \frac{21}{7}

\: \: \: \: \: \: \: \: \leadsto \: \: {DF} \: \: = \: \: {3} \: \: cm

\: \: \: \: \: \: \: \: Hence, \\ \: \: The \: \: height \: \: of \: \: parallelogram \: \: is \: \: {3} \: {cm}

______________________________________

______________________________________

Attachments:
Similar questions