Triangle ABC is right angled at A.
Find the area of the shaded region if AB=6cm BC=10cm,O is the centre of the incircle of triangle ABC.
Attachments:
![](https://hi-static.z-dn.net/files/d6e/b366c84162354e9f936e6a8bd8b675f1.jpg)
Answers
Answered by
38
QUESTION:
Triangle ABC is right angled at A.
Find the area of the shaded region if AB=6cm BC=10cm,O is the centre of the incircle of triangle ABC.
SOLUTION:
ABC is a right angled triangle at A.
BC=10 cm and AB=6cm.
Let O be the centre and R be the radius of circle.
AB,BC,CA are tangents to the circle at P,M and N.
So, IP=IM=IN=R (radius of the circle)
In triangle ABC, Using Pythagoras Theorem:
![bc {}^{2} = ab {}^{2} + ac {}^{2} bc {}^{2} = ab {}^{2} + ac {}^{2}](https://tex.z-dn.net/?f=bc+%7B%7D%5E%7B2%7D++%3D+ab+%7B%7D%5E%7B2%7D++%2B+ac+%7B%7D%5E%7B2%7D+)
![(10) {}^{2} = (6) {}^{2} + ac {}^{2} (10) {}^{2} = (6) {}^{2} + ac {}^{2}](https://tex.z-dn.net/?f=%2810%29+%7B%7D%5E%7B2%7D++%3D+%286%29+%7B%7D%5E%7B2%7D++%2B+ac+%7B%7D%5E%7B2%7D+)
![ac {}^{2} = 100 - 36 = 64 ac {}^{2} = 100 - 36 = 64](https://tex.z-dn.net/?f=ac+%7B%7D%5E%7B2%7D++%3D+100+-+36+%3D+64)
![ac = \sqrt{64} ac = \sqrt{64}](https://tex.z-dn.net/?f=ac+%3D++%5Csqrt%7B64%7D+)
![ac = 8cm ac = 8cm](https://tex.z-dn.net/?f=ac+%3D+8cm)
Now, The area of triangle ABC
![= \frac{1}{2} \times 8 \times 6 = \frac{1}{2} \times 8 \times 6](https://tex.z-dn.net/?f=+%3D++%5Cfrac%7B1%7D%7B2%7D++%5Ctimes++8+%5Ctimes+6)
![= 24cm {}^{2} = 24cm {}^{2}](https://tex.z-dn.net/?f=+%3D+24cm+%7B%7D%5E%7B2%7D+)
Area of ABC = Area of IAB +Area of IBC +Area of ICA
![24 = \frac{1}{2} \times r(ab) + \frac{1}{2} \times r(bc) + \frac{1}{2} \times r(ca) 24 = \frac{1}{2} \times r(ab) + \frac{1}{2} \times r(bc) + \frac{1}{2} \times r(ca)](https://tex.z-dn.net/?f=24+%3D++%5Cfrac%7B1%7D%7B2%7D++%5Ctimes+r%28ab%29+%2B++%5Cfrac%7B1%7D%7B2%7D++%5Ctimes+r%28bc%29+%2B++%5Cfrac%7B1%7D%7B2%7D+%5Ctimes+r%28ca%29+)
![24 = \frac{1}{2} \times r(ab + bc + ca) 24 = \frac{1}{2} \times r(ab + bc + ca)](https://tex.z-dn.net/?f=24+%3D++%5Cfrac%7B1%7D%7B2%7D++%5Ctimes+r%28ab+%2B+bc+%2B+ca%29)
![24 = \frac{1}{2} \times r (6 + 8 + 10) 24 = \frac{1}{2} \times r (6 + 8 + 10)](https://tex.z-dn.net/?f=24+%3D++%5Cfrac%7B1%7D%7B2%7D+++%5Ctimes+r+%286+%2B+8+%2B+10%29)
![24 = 12r 24 = 12r](https://tex.z-dn.net/?f=24+%3D+12r)
![r = 2cm r = 2cm](https://tex.z-dn.net/?f=r+%3D+2cm)
Hence, The radius of circle is 2 cm.
Area of circle
![= \pi \: r {}^{2} = \pi \: r {}^{2}](https://tex.z-dn.net/?f=+%3D+%5Cpi+%5C%3A+r+%7B%7D%5E%7B2%7D+)
![3.14 \times 2 \times 2 = 12.56cm {}^{2} 3.14 \times 2 \times 2 = 12.56cm {}^{2}](https://tex.z-dn.net/?f=3.14+%5Ctimes+2+%5Ctimes+2+%3D+12.56cm+%7B%7D%5E%7B2%7D+)
Now , The area of shaded region
![= 24 - 12.56 = 24 - 12.56](https://tex.z-dn.net/?f=+%3D+24+-+12.56)
![= 11.44cm {}^{2} = 11.44cm {}^{2}](https://tex.z-dn.net/?f=+%3D+11.44cm+%7B%7D%5E%7B2%7D+)
So, The area of shaded region is 11.44 cm^2
Triangle ABC is right angled at A.
Find the area of the shaded region if AB=6cm BC=10cm,O is the centre of the incircle of triangle ABC.
SOLUTION:
ABC is a right angled triangle at A.
BC=10 cm and AB=6cm.
Let O be the centre and R be the radius of circle.
AB,BC,CA are tangents to the circle at P,M and N.
So, IP=IM=IN=R (radius of the circle)
In triangle ABC, Using Pythagoras Theorem:
Now, The area of triangle ABC
Area of ABC = Area of IAB +Area of IBC +Area of ICA
Hence, The radius of circle is 2 cm.
Area of circle
Now , The area of shaded region
So, The area of shaded region is 11.44 cm^2
kuttukithu:
Thanks bro
Answered by
19
Answer:- Area of the shaded region is 11.44 square cm.
Attachments:
![](https://hi-static.z-dn.net/files/d92/30d98b4ff54d221f3ce3183192bd27cc.jpg)
![](https://hi-static.z-dn.net/files/dbf/403b0a03e6333f405032402d2640734a.jpg)
Similar questions