Math, asked by Anonymous, 6 months ago

Triangle ABC ~ triangle PQR and (triangle ABC ) = 4ar (triangle PQR ) if BC = 12cm, find QR.
please answers my question fast......NO SPAM❌❎​

Answers

Answered by singhamanpratap0249
14

Answer:

(triangle ABC ) = 4ar (triangle PQR )

both are similar triangle so height of both triangle is same

 \frac{1}{2}  \times  hight \times bc = 4 + \times  \frac{1}{2}  \times  hight \: qr

 \frac{1}{2}  \times 12 =4 \times   \frac{1}{2}  \times qr

qr \:  = 3cm

Answered by King412
184

 \sf \large \orange {\underline \orange{Given - }}

  • ∆ABC ~ ∆PQR
  • (∆ABC) = 4AR (∆PQR)
  • BC = 12cm

 \sf \large \orange {\underline \orange{To \: find - }}

  • Length of side QR

 \sf \large \orange {\underline \orange{S olution \: - }}

Here,

(∆ABC) = 4AR (∆PQR)

\sf \therefore  \frac{ \triangle ABC }{ \triangle PQR }  =  \frac{4}{1}  \\

∆ABC ~ ∆PQR

\sf \therefore  \frac{ \triangle ABC }{ \triangle PQR }  =  \frac{BC ^{2} }{ {QR}^{2} }  \\

 \sf\longrightarrow \:  \frac{BC ^{2}  }{QR ^{2} }  =   \frac{ {4} }{ {1} }  \\

The length of side BC is 12cm.

\sf \longrightarrow \:  \frac{12 ^{2}  }{QR ^{2} }  =   \frac{ {4}}{ {1}}  \\

\sf \longrightarrow \:  QR ^{2}   =   \frac{ {12}^{2} }{ {4} }  \\

 \sf\longrightarrow \:  QR ^{2}   =   36 \\

By taking square roots,

 \longrightarrow \red {\boxed{ \sf  QR    =   6}} \\

Ans :- The length of QR is 6 cm.

Similar questions