triangle p q r is an isosceles triangle in which pq equal to pr qp is produced to pt s qp equals to ps show that angle q r s equal to 90 degree
Answers
Step-by-step explanation:
Angle QPR=(180°-Angle SPR) (linear angles)
In triangle PQR,
Angle Q= Angle PRQ
A/Q
Angle Q+Angle PRQ+ Angle QPR=180°
or,Angle PRQ+ Angle PRQ+ (180°-Angle SPR)= 180°
or, 2×Angle PRQ+ 180°-Angle SPR= 180°
or, 2×Angle PRQ= 180°-180°+Angle SPR
or, 2×Angle PRQ= Angle SPR
hence, Angle PRQ=Angle SPR/2
In triangle SPR,
QP=PR=PS
So, Angle PSR=Angle PRS
A/Q,
Angle SPR+ Angle PSR+ Angle PRS= 180°
or, Angle SPR+ Angle PRS+ Angle PRS=180°
or, 2×Angle PRS=180°-Angle SPR
hence, Angle PRS=(180°-Angle SPR)/2
Now,
Angle QRS= Angle PRQ+ Angle PRS
= Angle SPR/2+ (180°-Angle SPR)/2
= (180°+ Angle SPR -Angle SPR)/2
=180°/2
=90°. Proved.
Answer:
u see in pic
Step-by-step explanation: