Math, asked by Anonymous, 9 months ago

trigno.... [jee advanced] ​

Attachments:

Answers

Answered by Anonymous
14

❏ Solution:-

\sf\bf{\longrightarrow} \bf\sum\limits_{k=1}^{13}\frac{1}{\sin[\frac{\pi}{4}+\frac{(k-1)\pi}{6}] \sin[\frac{\pi}{4}+\frac{k\pi}{6}]}

\sf\longrightarrow \bf\sum\limits_{k=1}^{13}\frac{\frac{1}{ \frac{1}{2} } \times  \frac{1}{2} }{\sin[\frac{\pi}{4}+\frac{(k-1)\pi}{6}] \sin[\frac{\pi}{4}+\frac{k\pi}{6}]}

\sf\longrightarrow \bf\frac{1}{\frac{1}{2}}\sum\limits_{k=1}^{13}\frac{\frac{1}{2}}{\sin[\frac{\pi}{4}+\frac{(k-1)\pi}{6}] \sin[\frac{\pi}{4}+\frac{k\pi}{6}]}

 \sf\longrightarrow \bf2\sum\limits_{k=1}^{13}\frac{\sin\frac{\pi}{4}}{\sin[\frac{\pi}{4}+\frac{(k-1)\pi}{6}] \sin[\frac{\pi}{4}+\frac{k\pi}{6}]}

\sf\longrightarrow \bf 2\sum\limits_{k=1}^{13}\frac{\sin[\{\frac{\pi}{4}+\frac{k\pi}{6}\}-\{\frac{\pi}{4}+\frac{(k-1)\pi}{6}\}]}{\sin[\frac{\pi}{4}+\frac{(k-1)\pi}{6}]\sin[\frac{\pi}{4}+\frac{k\pi}{6}]}

\small\sf\longrightarrow \bf 2\sum\limits_{k=1}^{13}\frac{\sin\{\frac{\pi}{4}+\frac{k\pi}{6}\}\cos\{\frac{\pi}{4}+\frac{(k-1)\pi}{6}\}-\cos\{\frac{\pi}{4}+\frac{k\pi}{6}\}\sin\{\frac{\pi}{4}+\frac{(k-1)\pi}{6}\}}{\sin[\frac{\pi}{4}+\frac{(k-1)\pi}{6}] \sin[\frac{\pi}{4}+\frac{k\pi }{6}]}

\sf\longrightarrow \bf 2\sum\limits_{k=1}^{13}[\frac{ \cancel{\sin\{\frac{\pi}{4}+\frac{k\pi}{6}\}}\cos\{\frac{\pi}{4}+\frac{(k-1)\pi}{6}\}}{\sin\{\frac{\pi}{4}+\frac{(k-1)\pi}{6}\} \cancel{\sin\{\frac{\pi}{4}+\frac{k\pi}{6}\}}}-\frac{\cos\{\frac{\pi}{4}+\frac{k\pi}{6}\} \cancel{\sin\{\frac{\pi}{4}+\frac{(k-1)\pi}{6}\}}}{ \cancel{\sin\{\frac{\pi}{4}+\frac{(k-1)\pi}{6}\}}\{\sin\frac{\pi}{4}+\frac{k\pi}{6}\}}]

\sf\longrightarrow \bf 2\sum\limits_{k=1}^{13}[\frac{ \cos \{ \frac{\pi}{4} +  \frac{(k - 1)\pi}{6} \}   }{ \sin \{ \frac{\pi}{4} +  \frac{(k - 1)\pi}{6} \}} -  \frac{\cos \{ \frac{\pi}{4} +  \frac{k \pi}{6} \} }{\sin \{ \frac{\pi}{4} +  \frac{k \pi}{6} \}} ]

\sf\longrightarrow \bf 2\sum\limits_{k=1}^{13}[ \cot\{ \frac{\pi}{4} +  \frac{(k - 1)\pi}{6} \}   -  \cot \{ \frac{\pi}{4} +  \frac{k\pi}{6} \}  ]

\small\sf\longrightarrow \bf 2 \times[ \cot  \{ \frac{\pi}{4}   +  \frac{(1 - 1)\pi}{6}  \} -  \cot \{ \frac{\pi}{4}  +  \frac{\pi}{6}  \}  \\ +  \cot  \{ \frac{\pi}{4}   +  \frac{(2 - 1)\pi}{6}  \} -  \cot \{ \frac{\pi}{4}  +  \frac{2\pi}{6}  \} \\  +  \cot  \{ \frac{\pi}{4}   +  \frac{(3- 1)\pi}{6}  \}  -  \cot \{ \frac{\pi}{4}  +  \frac{3\pi}{6}  \} \\  + .................................  \\ +  \cot  \{ \frac{\pi}{4}   +  \frac{(13- 1)\pi}{6}  \} -  \cot \{ \frac{\pi}{4}  +  \frac{13\pi}{6}  \}]</p><p>

 \small\sf\longrightarrow \bf 2 \times[ \cot  \{ \frac{\pi}{4}\} -   \cancel{\cot \{ \frac{\pi}{4}  +  \frac{\pi}{6}  \} } \\ +  \cancel{\cot  \{ \frac{\pi}{4}   +  \frac{\pi}{6}  \}} -  \cancel{\cot \{ \frac{\pi}{4}  +  \frac{2\pi}{6}  \} }\\  +  \cancel{\cot  \{ \frac{\pi}{4}   +  \frac{2\pi}{6}  \}}  -  \cancel{\cot \{ \frac{\pi}{4}  +  \frac{3\pi}{6}  \}} \\  + .................................  \\ +  \cancel{\cot  \{ \frac{\pi}{4}   +  \frac{12\pi}{6}  \} }-  \cot \{ \frac{\pi}{4}  +  \frac{13\pi}{6}  \}]

  \sf \longrightarrow 2 \times [\cot \{  \frac{\pi}{4}  \} -  \cot \{  \frac{\pi}{4}  +  \frac{13\pi}{6} \}]

 \sf \longrightarrow 2 \times [\cot \{  \frac{\pi}{4}  \} -  \cot \{  \frac{\pi}{4}  + ( 2\pi + \frac{\pi}{6} )\}]

\sf\longrightarrow \bf 2 \times[ \cot \{  \frac{\pi}{4}  \}- \cot \{2\pi + (  \frac{\pi}{4}  +  \frac{\pi}{6}  )\}]

\sf\longrightarrow \bf 2 \times[ \cot \{  \frac{\pi}{4}  \}- \cot \{ \frac{\pi}{4}  +  \frac{\pi}{6}  \}]

[  \because \cot(2\pi +  \theta) =  \cot \theta \:  \: ]

\sf\longrightarrow \bf 2 \times[ \cot \{  \frac{\pi}{4}  \}-  \frac{1}{\tan\{ \frac{\pi}{4}  +  \frac{\pi}{6}  \}}]

\sf\longrightarrow \bf 2 \times[ \cot \{  \frac{\pi}{4}  \}-  \frac{1  -  \tan \frac{ \pi}{4} \tan \frac{\pi}{6}  }{\tan\frac{\pi}{4}  +  \tan \frac{\pi}{6}  }]

\sf\longrightarrow \bf 2 \times[1 -  \frac{1 -  \tan \frac{\pi}{6} }{1 +  \tan \frac{\pi}{6} } ]

  ( \because \cot \frac{\pi}{4} =  \tan \frac{\pi}{4}  = 1)

\sf\longrightarrow \bf 2 \times[ \frac{ \cancel1 +  \tan \frac{\pi}{6}  - \cancel1 +   \tan \frac{\pi}{6} }{1 +  \tan \frac{\pi}{6} } ]

 \sf\longrightarrow \bf 2 \times[ \frac{   2\tan \frac{\pi}{6}   }{1 +  \tan \frac{\pi}{6} } ]

\sf\longrightarrow \bf  [ \frac{   4\tan \frac{\pi}{6}   }{1 +  \tan \frac{\pi}{6} } ]</p><p>

\sf\longrightarrow \bf  [ \frac{   4\tan \frac{\pi}{6}   }{1 +  \tan \frac{\pi}{6} } ] </p><p>

\sf\longrightarrow \bf  [ \frac{   4 \times  \frac{1}{ \sqrt{3} }   }{1 +    \frac{1}{ \sqrt{3} }  }  ]

\sf\longrightarrow \bf  [ \frac{ \frac{4}{  \cancel{\sqrt{3} } }  }{    \frac{ \sqrt{3}  + 1}{  \cancel{\sqrt{3} }  }}  ]

 \sf\longrightarrow \bf  [ \frac{ 4  }{   \sqrt{3}   + 1}  ]

\sf\longrightarrow \bf  [ \frac{ 4  \times ( \sqrt{3}  - 1) }{  ( \sqrt{3}   + 1)( \sqrt{3}  - 1)}  ]

 \sf\longrightarrow \bf  [ \frac{ \cancel 4  \times ( \sqrt{3}  - 1) }{  \cancel2 }  ]

 \sf\longrightarrow \bf   \boxed{  \bf\large{\red{2( \sqrt{3}   - 1) }}}

Similar questions