Math, asked by vijay368, 1 year ago

trignometric ratio table please a photo will be also ok

Answers

Answered by MOSFET01
14
\bold{\underline{\underline{Answer}}}\begin{center}\begin{tabular}{ |c|c|c|c|c|c|c|} \cline{1-7}\theta & sin\: \theta & cos \: \theta & tan \: \theta & cosec \: \theta & sec\: \theta & cot\: \theta \\0^{\circ} & 0 & 1 & 0 & inf. & 1 & inf. \\ 30^{\circ} & 1/2 & \sqrt{3}/2 & 1/\sqrt{3} & 2 & 2/\sqrt{3} & \sqrt{3}\\ 45^{\circ} & 1/\sqrt{2} & 1/\sqrt{2} & 1 & \sqrt{2} & \sqrt{2} & 1\\ 60^{\circ} & \sqrt{3}/2 & 1/2 & \sqrt{3} & 2/\sqrt{3} & 2 & 1/\sqrt{3}\\ 90^{\circ} & 1 & 0 & inf. & 1 & inf. & 0\\ \cline{1-7}\end{tabular}

Trignometric table help us in finding the foundatioal question.

 1)\:sin\:\theta \:=\:\frac{P}{H} \\\\ 2)\: cos\:\theta\: = \: \frac{B}{H} \\\\ 3)\:tan\: \theta \: = \: \frac{P}{B} \\\\ 4)\: cosec\:\theta \: = \: \frac{H}{P} \\\\ 5)\: sec\:\theta \: = \: \frac{H}{B} \\\\ 6)\:cot \: \theta \: = \: \frac{B}{P}

P = Perpendicular

B = Base

H = Hypotenuse

\bold{\large{\underline{Thanks}}}
Similar questions