Trignometry based question pls solve as soon as possible.. Thanks!!
Attachments:
Answers
Answered by
1
hello,
LHS=
[(sinA/1+cosA)+(1+cosA)/sinA]·[(sinA/1-cosA)-(1-cosA)/sinA]
taking LCM,
⇒[sin²A+(1+cosA)²/(1+cosA)(sinA)]·[sin²A-(1-cosA)²/(1-cosA)(sinA)]
⇒[(sin²A+1+cos²A+2cosA)/(1+cosA)(sinA)·[sin²A-(1+cos²A-2cosA)/(1-cosA)(sinA)] opening bracket using whole square identity
⇒[(2+2cosA)/(1+cosA)(sinA)]·[(sin²A-1-cos²A+2cosA)/(1-cosA)(sinA)]
sin²A+cos²A=1
⇒[2(1+cosA)/(1+cosA)(sinA)]·[(-cos²A-cos²A+2cosA)/(1-cosA)(sinA)]
⇒[2/sinA]·[(-2cos²A+2cosA)/(1-cosA)(sinA)]
⇒2cosecA·[2cosA(1-cosA)/(1-cosA)(sinA)]
⇒2cosecA·[2cosA/sinA]
⇒2cosecA·2cotA cosA/sinA=cotA
⇒4.cosecA.cotA
=RHS
hence proved
if u like it please mark it as brainliest
trignometry is my favourite subject
LHS=
[(sinA/1+cosA)+(1+cosA)/sinA]·[(sinA/1-cosA)-(1-cosA)/sinA]
taking LCM,
⇒[sin²A+(1+cosA)²/(1+cosA)(sinA)]·[sin²A-(1-cosA)²/(1-cosA)(sinA)]
⇒[(sin²A+1+cos²A+2cosA)/(1+cosA)(sinA)·[sin²A-(1+cos²A-2cosA)/(1-cosA)(sinA)] opening bracket using whole square identity
⇒[(2+2cosA)/(1+cosA)(sinA)]·[(sin²A-1-cos²A+2cosA)/(1-cosA)(sinA)]
sin²A+cos²A=1
⇒[2(1+cosA)/(1+cosA)(sinA)]·[(-cos²A-cos²A+2cosA)/(1-cosA)(sinA)]
⇒[2/sinA]·[(-2cos²A+2cosA)/(1-cosA)(sinA)]
⇒2cosecA·[2cosA(1-cosA)/(1-cosA)(sinA)]
⇒2cosecA·[2cosA/sinA]
⇒2cosecA·2cotA cosA/sinA=cotA
⇒4.cosecA.cotA
=RHS
hence proved
if u like it please mark it as brainliest
trignometry is my favourite subject
Revanth312:
Thank you so much !!
Similar questions