Math, asked by yesAppa, 9 months ago

Trignometry question ::

If 7sin²A + 3cos²A = 4, show that tanA = 1/root3​

Answers

Answered by MajorLazer017
6

\fbox{\texttt{\green{Given:}}}

\bold{7sin^2A+3cos^2A=4}

\fbox{\texttt{\orange{To\:prove:}}}

\bold{tanA=\frac{1}{\sqrt{3}}}

\fbox{\texttt{\blue{Identity\:used:}}}

\bold{sin^2\theta+cos^2\theta=1}

\fbox{\texttt{\red{How\:to\:Prove:}}}

Given, \bold{7sin^2A+3cos^2A=4}

\implies\bold{7sin^2A+3(1-sin^2A)=4}

\implies\bold{7sin^2A+3-3sin^2A=4}

\implies\bold{4sin^2A=1}

\implies\bold{sin^2A=\frac{1}{4}}

\implies\bold{sinA=\sqrt{\frac{1}{4}}=\frac{1}{2}}

\implies\bold{sinA=sin30^{\circ}}

\implies\bold{A=30^{\circ}}

\therefore\bold{tanA=tan30^{\circ}=\frac{1}{\sqrt{3}}}

\hrulefill

Some other trigonometric identities :

  • \bold{1+tan^2\theta=sec^2\theta}

  • \bold{1+cot^2\theta=cosec^2\theta}
Similar questions