Math, asked by mitratapas227, 9 months ago

trigonometric equation
.
16. cos x + sin x = 1
find the value of x

person will be marked as brainliest ​

Answers

Answered by Anonymous
1

Given \:  \:  \: Question \:  \: Is \:  \\  \\  \cos(x)  +  \sin(x)  = 1 \\ find \:  \:  \: x \\  \\ Answer \:  \\  \\ we \:  \: know \:  \: that \:  \:  \\  \sin {}^{2} (x)  +  \cos {}^{2} (x)  = 1 \\  \\  \cos(x)  =  \sqrt{(1 -  \sin {}^{2} (x) )}  \\  \\  \sqrt{(1 -  \sin {}^{2} (x)) }  +  \sin(x)  = 1 \\  \\ put \:  \:  \:  \sin(x)  = z  \:  \: ...(01)\\  \\  \sqrt{(1 - z {}^{2}) }  + z = 1 \\  \\  \sqrt{(1 - z {}^{2} )}  = (1 - z) \\  \\ squaring \:  \: on \:  \: bothsides \:  \:  \\  \\ (1 - z {}^{2} ) = 1 + z {}^{2}  - 2z \\  \\ (1 - z {}^{2}  - z {}^{2}  - 1 + 2z) = 0 \\  \\  - 2z {}^{2}  + 2z = 0 \\  \\ 2z {}^{2}  - 2z = 0 \\  \\ 2z(z - 1) = 0 \\  \\ 2z = 0 \:  \:  \:  \: or \:  \:  \:  \: (z - 1) = 0 \\  \\ z = 0 \:  \:  \:  \: or \:  \:  \:  \: z = 1 \\  \\ from \:  \:  \:  \: (01) \\  \\   \sin(x)  = 0 \:  \:  \:  \: or \:  \:  \:  \:  \sin(x)  = 1 \\  \\  \sin(x)  =  \sin(0)  \:  \:  \: or \:  \:  \:  \:  \sin(x)  =  \sin(90)  \\  \\ x = 0 \:  \:  \: or \:  \:  \:  \: x = 90 \\  \\ therefore \:  \:  \:  \: x = 0 \:  \:  \: or \:  \:  \: x = 90

Similar questions