Math, asked by gaotamrajni3915, 8 months ago

trigonometric ratio of complementary angle

3 cotton 31 tan 15 cot 27 tan 75 cot 63 cot 59

Answers

Answered by Anonymous
100

Correct Question:

3cot(31) tan(15) cot(27) tan(75) cot(63) cot(59)

Your Answer:

We know that

  • cot(90-A) = tan A
  • tan(90-A) = cot A

So,

  • cot 31 = cot ( 90 - 59 ) = tan 59
  • tan 15 = tan ( 90 - 75 ) = cot 75
  • cot 27 = cot ( 90 - 63 ) = tan 63

Replacing Values in the Equation

= 3 tan 59. cot 75. tan 63.  tan 75. cot 63. cot 59

Taking them in a correct order

= 3 tan 59. cot 59 . cot 75. tan 75. tan 63. cot 63

We also know that cot A. tan A = 1

= 3 (1)(1)(1)

= 3

So, Answer is 3

More to know:

  • cos A = sin ( 90 - A )
  • sin A = cos ( 90 - A )
  • sec A = cosec ( 90 - A )
  • cosec A = sec ( 90 - A )
  • sin A / cos A = tan A
  • cos A / sin A = cot A
  • 1/cos A = sec A
  • 1/sin A = cosec A
Answered by rocky200216
67

\large\mathcal{\underbrace{\red{SOLUTION:-}}}

TO FIND :-

  • The value of, \rm{3\:\cot{31}\:.\tan{15}\:.\cot{27}\:.\tan{75}\:.\cot{63}\:.\cot{59}\:}

FORMULA :-

\mathbb{\underline{\red{Complement\:angles\::-}}}

✍️ Two angles are said to be complementary if their sum is ‘90°’ . Thus ‘θ’ and ‘(90 - θ)°’ are complementary angles .

☞ Complementary angles in trigonometric function are,

  • \rm{\sin(90\:-\:\theta)\:=\:\cos\theta\:}

  • \rm{\cos(90\:-\:\theta)\:=\:\sin\theta\:}

  • \rm{\tan(90\:-\:\theta)\:=\:\cot\theta\:}

  • \rm{\cot(90\:-\:\theta)\:=\:\tan\theta\:}

  • \rm{\sec(90\:-\:\theta)\:=\:\cosec\theta\:}

  • \rm{\cosec(90\:-\:\theta)\:=\:\sec\theta\:}

✍️ Some trigonometric identities .

\checkmark\:\rm{\underline{\sin\theta\:.\:\cosec\theta\:=\:1\:}}

\checkmark\:\rm{\underline{\cos\theta\:.\:\sec\theta\:=\:1\:}}

\checkmark\:\rm{\underline{\tan\theta\:.\:\cot\theta\:=\:1\:}}

CALCULATION :-

  • \rm{\cot(90\:-\:59)\:=\:\tan59\:}

  • \rm{\cot(90\:-\:63)\:=\:\tan63\:}

  • \rm{\tan(90\:-\:75)\:=\:\cot75\:}

\checkmark\:\rm{\underline{3\:\cot31\:.\tan15\:.\cot27\:.\tan75\:.\cot63\:.\cot59\:}}

\longrightarrow\:\rm{3\:\cot(90\:-\:59)\:.\tan(90\:-\:75)\:.\cot(90\:-\:63)\:.\tan75\:.\cot63\:.\cot59\:}

\longrightarrow\:\rm{3\:\tan59\:.\cot75\:.\tan63\:.\tan75\:.\cot63\:.\cot59\:}

\longrightarrow\:\rm{3\:(\tan59\:.\cot59)\:.(\cot75\:.\tan75)\:.(\tan63\:.\cot63)\:}

\longrightarrow\:\rm{3\:\times{1}\:\times{1}\:\times{1}\:}

\longrightarrow\:\rm{\underline{\blue{3}}}

\bigstar\:\bf{\underline{\green{\boxed{Required\:Answer\::\:3\:}}}}

Similar questions