Math, asked by BRAINLYxKIKI, 2 months ago

★ Trigonometry ★

1: In ∆ ABC , right-angled at B , AB = 24 cm , BC = 7 cm. Determine :
• sin A
• cos A
• sin C
• cos C

2: Given sec\theta =  \dfrac{13}{12} , calculate all other trigonometric ratios.

→ Spam not allowed !
→ Appreciation for quality answerers​

Answers

Answered by OtakuSama
48

Question 1.

1: In ∆ ABC , right-angled at B , AB = 24 cm , BC = 7 cm. Determine :

  • sin A
  • cos A
  • sin C
  • cos C

Required Answer:-

Given:-

In ∆ ABC , B is at right angle.

  • AB = 24 cm
  • BC = 7 cm

To Find:-

To determine:-

  • sin A
  • cos A
  • sin C
  • cos C

Solution:-

◇Kindly see the 1st attachment

We know that, According to Pythagoras Theorem :-

 \\  \underline{ \boxed{ \pmb{Hypotenuse {}^{2}  = Perpendicular {}^{2}  + Base {}^{2} }}} \\  \\

Hence,

 \\  \sf{ \bold{ {AC}^{2}  = AB {}^{2}  +  {BC}^{2} }}

 \\  \sf{ \implies{ {AC}^{2}  =  {24}^{2}  +   {7}^{2} }}

 \\  \sf{ \implies{ {AC}^{2}  = 576 + 49}}

 \\  \sf{ \implies{AC =  \sqrt{625} }}

 \\  \sf{ \therefore{AC =  \bold{25cm}}} \\

Therefore,

As we know that:-

 \\  \sf{ \bold{sin \theta =  \frac{Opposite \: side}{hypotenuse}}}

   \\\sf{ \rightarrow{ sinA = \frac{BC}{AC}}}

  \sf{ \therefore{ sinA =  \bold{ \red{\frac{7}{25}}} }}\\\\

  \\ \sf{ \bold{cos \theta =  \frac{Adjacent \: side}{Hypotenuse}}}

 \\ \sf{ \rightarrow{cosA =  \frac{AB}{AC} }}

 \\\sf{ \therefore{cosA=  \bold{ \red{ \frac{24}{25} }}}} \\  \\

Similarly,

  \\ \sf{ \rightarrow{ sinC = \frac{AB}{AC}}}

 \\\sf{ \therefore{ sinC =  \bold{ \red{\frac{24}{25}}} }}\\\\

And,

 \\\sf{ \rightarrow{cosC=  \frac{BC}{AC} }}

 \\\sf{ \therefore{cosC=  \bold{ \red{ \frac{7}{25} }}}} \\  \\

Question 2.

 \sf{2: Given \:  sec\theta =  \dfrac{13}{12} }

Calculate all other trigonometric ratios.

Required Answer:-

Given:-

 \sf{ sec\theta =  \dfrac{13}{12} }

To Find :-

  • Calculate all other trigonometric ratios.

Solution:-

◇ Kindly see the 2nd Attachment.

Let △ABC be right angled triangle (right angled at B)

As we know that:-

 \\  \underline{ \boxed{ \pmb{sec \theta =  \frac{hypotenuse}{Adjacent \: side}}}}

As we were given, we can write,

 \\  \sf{  \bold{sec \theta =  \frac{13}{12}  =  \frac{AC}{AB}}}  \\  \\

Now, according to Pythagoras Theorem :-

 \\  \underline{ \boxed{ \pmb{Hypotenuse {}^{2}  = Perpendicular {}^{2}  + Base {}^{2} }}} \\  \\

Hence,

 \: \\  \sf{ \bold{ {AC}^{2}  = AB {}^{2}  +  {BC}^{2} }}

 \\  \sf{ \implies{BC {}^{2}  =  {AC}^{2}  -  {AB}^{2} }}

 \\  \sf{ \implies{ {BC}^{2}  =  {13}^{2}  -  {12}^{2} }}

 \\  \sf{ \implies{ {BC}^{2}  = 169 - 144}}

 \\  \sf{ \implies{BC =  \sqrt{25}}}

 \\  \sf{ \therefore{BC=  \bold{5cm}}} \\  \\

Now,

 \\  \sf{ \bold{sin \theta =  \frac{Opposite  \: Side}{Hypotenuse} }}

 \\  \sf{ \rightarrow{sin \theta =  \frac{BC}{AC}  =  \red{ \frac{5}{13}}}}

 \\  \sf{ \bold{cos \theta =  \frac{Adjacent  \: Side}{Hypotenuse} }}

 \\  \sf{ \rightarrow{cos\theta =  \frac{AB}{AC}  =  \red{ \frac{12}{13}}}}

 \\  \sf{ \bold{tan \theta =  \frac{Opposite  \: Side}{Adjacent \: side} }}

 \\  \sf{ \rightarrow{tan\theta =  \frac{BC}{AB}  =  \red{ \frac{5}{12}}}}

 \\  \sf{ \bold{cot\theta =  \frac{Adjacent \: Side}{Opposite\: side} }}

\\  \sf{ \rightarrow{cot\theta =  \frac{AB}{BC}  =  \red{ \frac{12}{5}}}}

 \\  \sf{ \bold{cosec \theta =  \frac{Hypotenuse}{Opposite  \: Side} }}

 \\  \sf{ \rightarrow{cosec \theta =  \frac{AC}{BC}  =  \red{ \frac{13}{5}}}}

More Information:-

  • sin θ = Opposite Side/Hypotenuse

  • cos θ = Adjacent Side/Hypotenuse

  • tan θ = Opposite Side/Adjacent Side

  • sec θ = Hypotenuse/Adjacent Side

  • cosec θ = Hypotenuse/Opposite Side

  • cot θ = Adjacent Side/Opposite Side
Attachments:
Answered by LuvUhHindi
12

Sum no.1

Given:-

Triangle ABC, right angled at B=90°

AB=24 cm

BC=7 cm

To find:-

Determine:

sin A

cos A

sin C

cos C

Solution:-

In a given triangle ABC, right angle at B=90°.

Given that,

AB=24 cm

BC=7 cm

According to pythagoras theorem,

In a right angled triangle,the squares of the hypotenuse side is equal to the sum of the squares of the other two sides.

By applying pythagoras theorem,

 \sf\fbox {AC²=AB²+BC²}

Substituting the values,we get,

 \sf{AC²=(24)²+7²} \\ </p><p> \sf{AC²=(576+49)} \\ </p><p> \sf{AC²=625 cm²} \\ </p><p> \sf{AC= \sqrt{625} =25}</p><p></p><p>

Therefore,AC=25 cm.

✠ Solution Ꭵ

To find Sin (A), Cos (A)

We know that,

Sin function is the equal to the ratio of the opposite side to the hypotenuse side.

According to question,

 \sf{{sin  A =  \frac{opposite \: side}{hypotenus} }}

Substituting the values,

 \sf{sin  \: A =  \frac{ab}{ac}   =  \frac{24}{25} }

Cos function is equal to the ratio of the length of adjacent side to the hypotenuse side.

Hence it becames,

 \sf{sin  \: A =  \frac{oppposite \: side}{hypotenuse} =  \frac{24}{25}   }

✠ Solution ᎥᎥ

To find Sin (C), Cos (C)

 \sf{ \sin(c) =  \frac{ab}{ac} =  \frac{24}{25}   }

  \sf{\cos(c)  =  \frac{bc}{ac} =  \frac{7}{25}  }

Sum no.2

 \frak{ \sec(a) =  \frac{13}{12}  =  \frac{h}{b}  }

By Pythagoras theorem,

 \sf{ {bc}^{2}  =  {ac}^{2}  +  {ab}^{2} } \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = (13 {)}^{2}  - (12 {)}^{2}  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \: = 169 - 144 = 25

also,

 \sf{sin \:A =  \frac{5}{13} } \\  \sf{cos  \: A  =  \frac{12}{13} } \\  \sf{tan \:  A =  \frac{5}{12}  } \\  \sf{cot \:  A =  \frac{12}{5} } \\  \sf {cosec \:A =  \frac{13}{5} }

Similar questions