Math, asked by beNever, 5 hours ago

Trigonometry class 10th


 \huge\left. \begin{array}  { l  }   {  \frac { 1 - \sin \theta } { \cos \theta } = \frac { \cos \theta } { 1 + \sin \theta } } \end{array} \right.

Answers

Answered by ladlikhan345
0

Step-by-step explanation:

 \frac{1 -  \sin(a) }{ \cos(a) }   =   \frac{ \cos(a) }{1 +  \sin(a) }  \\  \\  =  (1 -  \sin(a) )(1 +  \sin(a) )  \\  \\  \  =  \cos(a)  \times  \cos(a)  \\  \\  ({1 -  \sin(a) })^{2}  =  ({ \cos(a) })^{2}  \\  \\ we \: know \: that \: ( {1 -  \sin(a) }) ^{2}  =  \ { \cos(a) }^{2}   \\  \\  { \cos( a ) }^{2}  =  { \cos(a) }^{2} Mark me as brainliest

slide to see answer

Similar questions