trigonometry question
Attachments:
Answers
Answered by
4
hey !!!
(tan¢ + cot¢ )²- cosec²¢ - sec²¢ = 0
from LHS
(tan¢ + cot¢ )² - cosec²¢ - sec²¢
=> tan²¢ + cot²¢ + 2tan¢ × cot¢ - cosec²¢ - sec²¢
=> tan²¢ - sec²¢ - cosec²¢ + cot²¢ + 2tan¢ × cot¢
=>-( sec²¢ - tan²¢ ) -( cosec²¢ - cot²¢ ) + 2tan¢ × cot¢
=> -1 - 1 + 2
=.> - 2 + 2
= > 0 RHS prooved
hope it helps !!!
₹Rajukumar111
(tan¢ + cot¢ )²- cosec²¢ - sec²¢ = 0
from LHS
(tan¢ + cot¢ )² - cosec²¢ - sec²¢
=> tan²¢ + cot²¢ + 2tan¢ × cot¢ - cosec²¢ - sec²¢
=> tan²¢ - sec²¢ - cosec²¢ + cot²¢ + 2tan¢ × cot¢
=>-( sec²¢ - tan²¢ ) -( cosec²¢ - cot²¢ ) + 2tan¢ × cot¢
=> -1 - 1 + 2
=.> - 2 + 2
= > 0 RHS prooved
hope it helps !!!
₹Rajukumar111
Answered by
11
Question:
Show that (tanθ + cotθ)² - cosec²θ - sec²θ = 0
Step-by-step explanation:
L.H.S. : (tanθ + cotθ)² - cosec²θ - sec²θ
- Identity : (a + b)² = a² + b² + 2ab Here, a = tanθ, b = cotθ
→ [ (tanθ)² + (cotθ)² + 2(tanθ)(cotθ) ] - cosec ²θ - sec²θ
→ [ tan²θ + cot²θ + 2.tanθ.cotθ ] - cosec²θ - sec²θ
Opening the bracket.
→ tan²θ + cot²θ + 2.tanθ.cotθ - cosec²θ - sec²θ
- Identity : 1 + tan²θ = sec²θ
From this, we get [ tan²θ = sec²θ - 1 ]
- Identity : 1 + cot²θ = cosec²θ
From this, we get [ cot²θ = cosec²θ - 1 ]
→ (sec²θ - 1) + (cosec²θ - 1) + 2.tanθ.cotθ - cosec²θ - sec²θ
Opening the brackets.
→ sec²θ - 1 + cosec²θ - 1 + 2.tanθ.cotθ - cosec²θ - sec²θ
Rearranging the terms.
→ sec²θ - sec²θ + cosec²θ - cosec²θ - 1 - 1 + 2.tanθ.cotθ
→ - 1 - 1 + 2.tanθ.cotθ
- Identity : cotθ = 1/tanθ
→ - 1 - 1 + 2.tanθ.(1/tanθ)
→ - 1 - 1 + 2
→ - (1 + 1) + 2
→ - 2 + 2
→ 0
= R.H.S.
Hence, proved !!
Similar questions