try this question GB2010
Attachments:
Answers
Answered by
1
Option - (3)
Given, (3a+2b+3c)^2 - (2a+3b+2c)^2 + 5b^2
= 3a^2 + 2b^2 + 3c^2 + 2(3a)(2b) + 2(2b)(3c) + 2(3c)(3a) - 2a^2 + 3b^2 + 2c^2 + 2(2a)(3b) + 2(3b)(2c) + 2(2c)(2a) + 5b^2
= 5a^2 + 10ac + 5c^2
= 5(a^2 + 2ac + c^2)
= 5(a+c)^2
= root 5 (a+c).
Hope this helps!
Given, (3a+2b+3c)^2 - (2a+3b+2c)^2 + 5b^2
= 3a^2 + 2b^2 + 3c^2 + 2(3a)(2b) + 2(2b)(3c) + 2(3c)(3a) - 2a^2 + 3b^2 + 2c^2 + 2(2a)(3b) + 2(3b)(2c) + 2(2c)(2a) + 5b^2
= 5a^2 + 10ac + 5c^2
= 5(a^2 + 2ac + c^2)
= 5(a+c)^2
= root 5 (a+c).
Hope this helps!
Similar questions