Math, asked by sahil18005, 1 month ago



try to solve it or leave it



no Spamming ❌ ​

Attachments:

Answers

Answered by Itzkrushika156
49

Step-by-step explanation:

answer in above attachment hope you understand

Attachments:
Answered by Anonymous
68

Question :

\sf{Prove\:that\:\dfrac{sin\theta + tan\theta}{cos\theta} = tan\theta(1 + sec\theta)} \\ \\

Solution :

:\implies \sf{Prove\:that\:\dfrac{sin\theta + tan\theta}{cos\theta} = tan\theta(1 + sec\theta)} \\ \\

From the above equation, we get :

  • \sf{LHS : \dfrac{sin\theta + tan\theta}{cos\theta}} \\ \\

  • \sf{RHS : tan\theta(1 + sec\theta)} \\ \\

Method (I) :

By solving the LHS, we get :

\sf{LHS : \dfrac{sin\theta + tan\theta}{cos\theta}} \\ \\ \sf{= \dfrac{sin\theta}{cos\theta} + \dfrac{tan\theta}{cos\theta}} \\ \\

We know that, tan(x) = sin(x)/cos(x), so by substituting it in the equation, we get :

\sf{= tan\theta + \dfrac{sin\theta}{cos\theta\cdot cos\theta}} \\ \\ \sf{= tan\theta + tan\theta \times \dfrac{1}{cos\theta}} \\ \\

Now, by substituting 1/cos(x) = sec(x), we get :

\sf{= tan\theta + tan\theta \times sec\theta} \\ \\ \sf{= tan\theta(1 + sec\theta)} \\ \\

Hence, \sf{LHS = tan\theta(1 + sec\theta)} \\ \\

Thus, \sf{\dfrac{sin\theta + tan\theta}{cos\theta} = tan\theta(1 + sec\theta)} \\ \\

[Proved]

Method (II) :

By solving the RHS, we get :

\sf{RHS : tan\theta(1 + sec\theta)} \\ \\ \sf{= tan\theta + tan\theta\cdot sec\theta} \\ \\

By substituting tan(x) = sin(x)/cos(x) in the equation, we get :

\sf{= \dfrac{sin\theta}{cos\theta} + \dfrac{sin\theta}{cos\theta}\cdot\dfrac{1}{cos\theta}} \\ \\ \sf{= \dfrac{sin\theta}{cos\theta} + \dfrac{tan\theta}{cos\theta}} \left[\because \sf{\dfrac{sin\theta}{cos\theta} = tan\theta}\right] \\ \\ \sf{= \dfrac{sin\theta + tan\theta}{cos\theta}} \\ \\

Hence, \sf{RHS :\dfrac{sin\theta + tan\theta}{cos\theta}} \\ \\

Thus, \sf{\dfrac{sin\theta + tan\theta}{cos\theta} = tan\theta(1 + sec\theta)} \\ \\

[Proved]


mddilshad11ab: Nice explaination ✔️
Similar questions