Two angles of a triangle are cot inverse 2 and cot inverse 3 than the third angle is
Answers
Answered by
0
Answer:
The third angle is \frac{3\pi}{4}
Step-by-step explanation:
Formula used:
cot^{-1}x=tan^{-1}(\frac{1}{x})
tan^{-1}x+tan^{-1}y=tan^{-1}(\frac{x+y}{1-xy})
Let the three angles of a triangle be
A,B and C
Then,
A+B+C=\pi
cot^{-1}2+cot^{-1}3+C=\pi
tan^{-1}(\frac{1}{2})+tan^{-1}(\frac{1}{3})+C=\pi
tan^{-1}(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}.\frac{1}{3}})+C=\pi
tan^{-1}(\frac{\frac{3+2}{6}}{1-\frac{1}{6}})+C=\pi
tan^{-1}(\frac{\frac{5}{6}}{\frac{5}{6}})+C=\pi
tan^{-1}(1)+C=\pi
\frac{\pi}{4}+C=\pi
C=\pi-\frac{\pi}{4}
C=\frac{3\pi}{4}
PLEASE MARK AS BRAINLIEST
Similar questions