TWO ANGLES OF A TRIANGLE ARE IN THE RATIO 4:5. IF THE SUM OF OF THESE ANGLES IS EQUAL TO THE THIRD ANGLE.FIND THE ANGLES
Answers
Answered by
547
Let the Triangle be ABC
Given: ∠A= 4x ; ∠B= 56x ; ∠C= ∠A+∠B
∠C= 4x+5x= 9x
By Angle Sum Property
∠A+∠B+∠C= 180°
4x+5x+9x= 180°
18x= 180°
x= 180/18= 10°
∵ ∠A= 4x= 4(10)= 40°
∠B= 5x= 5(10)= 50°
∠C= 9x= 9(10)= 90°
Given: ∠A= 4x ; ∠B= 56x ; ∠C= ∠A+∠B
∠C= 4x+5x= 9x
By Angle Sum Property
∠A+∠B+∠C= 180°
4x+5x+9x= 180°
18x= 180°
x= 180/18= 10°
∵ ∠A= 4x= 4(10)= 40°
∠B= 5x= 5(10)= 50°
∠C= 9x= 9(10)= 90°
Answered by
121
SOLUTION
Let the triangle (Δ) be ABC
Given : ∠A = 4x
∠B = 5x
∠C = ∠A+∠B
∠C= 4x + 5x = 9x
Here we use angle sum property
⇒ ∠A + ∠B + ∠C = 180°
⇒ 4x + 5x + 9x
⇒ 18x = 180°
⇒ x =
⇒ x = 10°
Let us verify that
to verify our answer we have to put 10° at the place of 'x'
let's do that
⇒ ∠A + ∠B + ∠C = 180°
⇒ 4x + 5x + 9x = 180°
⇒ 4×10 + 5×10 + 9×10 = 180°
⇒ 40 + 50 + 90 = 180°
⇒ 90 + 90 = 180°
⇒ 180° = 180°
∠A = 4x = 4×10 = 40°
∠B = 5x = 5×10 = 50°
∠C = ∠A+∠B
∠C= 4x + 5x = 9x = 9×10 = 90°
Therefore angles of triangle are 40° , 50° and 50°
Similar questions