Physics, asked by MuskanGandhi9122, 1 year ago

two bodies of mass m1 and m2 have same kinetic energy . Find the ratio of their momentum

Answers

Answered by Anonymous
11
hello friend...!!!

⇒ according to the question we should calculate the ratio of momentum ,

⇒ given the kinetic energies are equal 

⇒  KE_{1}   =  \frac{  P_{1}^{2} }{ 2m_{1} }

 KE_{2}   =  \frac{ P_{2} ^{2} }{ 2m_{2} }

since  KE_{1}   =  KE_{2}

⇒  \frac{  P_{1} ^{2} }{ 2m_{1} }   =  \frac{  P_{2} ^{2} }{ 2m_{2} }

⇒  \frac{  P_{1} ^{2} }{  P_{2} ^{2} }   =   \frac{ 2m_{1} }{ 2m_{2} }

⇒  \frac{ P_{1} }{ P_{2} }   =  \sqrt[]{ \frac{ m_{1} }{ m_{2} } }

______________________________________________________

hope it helps..!!


Answered by TheAishtonsageAlvie
3

Hey \:  \:  there  \\  \\ <br /><br />Let  \: KE   \: and  \: KE'  \: are  \: the  \: two  \: kinetic  \:  energies     \: with  \: Mass \:  M \:  and \:  m \\  \\  \\<br /><br />we  \: can  \: write  \: it  \: as  \\  \\  <br /><br />KE \:  \:  =  \frac{ {p \: }^{2} }{m}  \\ and \:  \\  \\ KE'   \:  =  \frac{ {P \: }^{2}  \: }{M \: }  \\  \\ it \: says \:  \\  \\ KE \:  = KE'   \:  \\  \\  = \frac{ {p \: }^{2}  }{m}  \:  =  \frac{ {P \: }^{2}  \: }{M \: } \:  \\  \\  =  \frac{{p \: }^{2}  \: }{{P \: }^{2} \: }  =  \frac{m}{M}  \:  \\  \\  =  \frac{p}{P \: }  \: \:  \:  \:  =   \sqrt{ \frac{m}{M} }  \:  \:  \: \:  \:  \:  \:  ( \: since \:  \frac{ {a}^{2} }{ {b}^{2} }  \:  =  ({ \frac{a}{b} })^{2} )



Hope this helps ya ☺
Similar questions