Physics, asked by aaisha102001, 9 months ago


Two capacitors of capacitance 10 uF and 20 uF are connected in series
with a 6V battery. If E is the energy stored in 20 uF capacitor what will be
the total energy supplied by the battery in terms of E.​

Answers

Answered by Anonymous
9

 \mathfrak{ \huge{ \red{ \underline{ \underline{ANSWER :-}}}}} \\  \\  \bigodot{ \blue{Given :}} \\  \\  \implies \: two \: capacitors \: of \: 10 \: uF \: and \: 20 \: uF \: are \: </p><p>connected \: in \: series \: with \: 6v \: battery \\  \implies \: energy \: stored \: in \: 20 \: uF \: capacitor \: is \: E \\  \\  \bigodot{ \blue{To \: Find :}} \\  \\ \implies \: total \: energy \: supplied \: by \: battery \\  \\  \bigodot  \blue{Formula :} \\  \\  \implies \: effective \: series \: capacitance \: is \: given \: by \\  \\  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{ \red{cs =  \frac{c1 \times c2}{c1 + c2}}} \\  \\  \implies \: energy \: supplied \: by \: battery  \:  \boxed{ \green{u =  \frac{1}{2} cs ×{v}^{2}}}  \\  \\  \implies \: energy \: stored \: in \: capacitor \:  \boxed{ \blue{u =  \frac{ {q}^{2} }{2c}}} \\  \\  \bigodot \:  \blue{Calculation :} \\  \\  \implies \: cs =  \frac{10 \times 20}{10 + 20}  =  \frac{20}{3} uF \\  \\  \implies \: charge \: on \: capacitor = cs \times v =  \frac{20}{3}  \times 6 = 40 \: uC \\  \\  \implies \: energy \: stored \: in \: 20 \: uF \: capacitor =  \frac{ {q}^{2} }{2c}  =  \frac{ {40}^{2} }{2 \times 20} =  40 \: uJ \:  = E \\ \\  \implies \: energy \: supplied \: by \: battery \: =  \frac{1}{2}  ×\frac{20}{3} ×{6}^{2} = 120 \: uJ = 3E \\  \\  \\  \implies \: so \: energy \: supplied \: by \: battery \: is \:  \boxed{ \boxed{ \red{u = 3E = 120 \: uJ}}}

Similar questions