Physics, asked by anilsreesounds, 4 months ago

Two cars started moving with initial velocities v and 2v. For the same
deceleration, their respective stopping distances are in the ratio
(A) 1:1 (B) 1:2 (C) 1:4
(D) 2:1
(E) 4:1

Answers

Answered by nadeeshkp
17

Answer:

C

Explanation:

using V^2 = U^2 - 2*a*s

s = v^2 / (2*a)

Answered by BrainlyConqueror0901
55

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{s_{1}: {s_{2}}  =1 : 4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline{\bold{Given :}}} \\  \tt: \implies Initial \: velocities \: of \: two \: car =  v \: and \: 2v \\  \\  \tt:  \implies Deceleration \: of \: car \: a = Deceleration \: of \: car \:b \\  \\ \red{\underline{\bold{To \: Find :}}} \\  \tt:  \implies Ratio \: of \: their \: stopping \: distance = ?

• According to given question :

  \green{\star  } \tt \: Final \: velocity \: of \: car \: a =Final \: velocity \: of \: car \: b \\  \\   \bold{As \: we \: know \: that} \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as_{1} \\  \\ \tt:  \implies  {0}^{2}  =  {v}^{2}  + 2as_{1}\\  \\ \tt:  \implies  { - v}^{2}  = 2as_{1} \\  \\ \tt:  \implies  s_{1}  =  \frac{  - {v}^{2} }{2a}  -  -  -  -  - (1) \\  \\  \bold{Similarly : } \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2a s_{2} \\  \\ \tt:  \implies  {0}^{2}  =  {(2v)}^{2}  + 2a s_{2} \\  \\ \tt:  \implies s_{2} =  \frac{ - 4 {v}^{2} }{2a}  \\  \\ \tt:  \implies s_{2} =  \frac{ - 2 {v}^{2} }{a}  -  -  -  -  - (2) \\  \\  \text{Dividing \: (1) \: by \: (2)} \\  \\  \tt:  \implies  \frac{ s_{1}}{s_{2}}  =   \huge{\frac{ \frac{ -  {v}^{2} }{2a} }{ \frac{ -  2{v}^{2} }{a} } } \\  \\ \tt:  \implies  \frac{ s_{1}}{s_{2}}  = \frac{1}{4}  \\  \\  \green{\tt:  \implies  { s_{1}} : {s_{2}}  =1 : 4}

Similar questions