Math, asked by Khushi5001, 1 year ago

Two chords AB and AC of a circle subtend angles equal to 90° and 150°,respectively at the centre. Find ∠BAC, if AB and AC lie on the opposite sides of the centre.

Answers

Answered by skriisha
2

Answer:the question is wrong as two chords can't have similar name( A)


Step-by-step explanation:


Answered by silentlover45
18

\large\underline{Diagram:-}

\large\underline{Questions:-}

Two chords AB and AC of a circle subtend angles equal to 90° and 150°,respectively at the centre. Find ∠BAC, if AB and AC lie on the opposite sides of the centre..

\large\underline{Given:-}

  • Two chords AB and AC of a circle subtend angles equal to 90° and 150°.

\large\underline{To find:-}

  • Find ∠BAC, if AB and AC lie on the opposite sides of the centre ...?

\large\underline{Solutions:-}

In ∆BOA,

\: \: \: \: \: OB \: \: = \: \: OA \: \: \: \: \: \: \: {(both \: \: are \: \: the \: \: radius \: \: of \: \: circle)}

\: \: \: \: \: \therefore \: \: \angle OAB \: \: = \: \: \angle OBA \: \: \: \: \: \: \: {(angle \: \: opposite \: \: to \: \: equal \: \: side \: \: are \: \: equal)}

In ∆OAB,

\: \: \: \: \: \angle OBA \: + \: \angle OAB \: + \: \angle AOB \: \: = \: \: {180} \degree \: \: \: \: \: \: {(by \: \: angle \: \: sum \: \: property \: \: of \: \: a \: \: triangle)}

\: \: \: \: \: \angle OBA \: + \: \angle OAB \: + \: {90} \degree \: \: = \: \: {180} \degree

\: \: \: \: \: {2} \: \angle OAB \: \: = \: \: {180} \degree \: - \: {90} \degree

\: \: \: \: \: {2} \: \angle OAB \: \: = \: \: {90} \degree

\: \: \: \: \: \angle OAB \: \: = \: \: \frac{{90} \degree}{2}

\: \: \: \: \: \angle OAB \: \: = \: \: {45} \degree

Now, In ∆AOC,

\: \: \: \: \: AO \: \: = \: \: OC \: \: \: \: \: \: \: {(both \: \: are \: \: the \: \: radius \: \: of \: \: circle)}

\: \: \: \: \: \therefore \: \: \angle OCA \: \: = \: \: \angle OAC \: \: \: \: \: \: \: {(angle \: \: opposite \: \: to \: \: equal \: \: side \: \: are \: \: equal)}

Also,

\: \: \: \: \: \angle AOC \: + \: \angle OAC \: + \: \angle OCA \: \: = \: \: {180} \degree \: \: \: \: \: \: {(by \: \: angle \: \: sum \: \: property \: \: of \: \: a \: \: triangle)}

\: \: \: \: \: {150} \degree \: + \: \angle OAC \: + \: \angle OCA \: \: = \: \: {180} \degree

\: \: \: \: \: {2} \: \angle OAC \: \: = \: \: {180} \degree \: - \: {150} \degree

\: \: \: \: \: {2} \: \angle OAC \: \: = \: \: {30} \degree

\: \: \: \: \: \angle OAC \: \: = \: \: \frac{{30} \degree}{2}

\: \: \: \: \: \angle OAB \: \: = \: \: {15} \degree

\: \: \: \: \: \therefore \: \: \angle BAC \: \: = \: \angle OAB \: + \: \angle OAC

\: \: \: \: \: \angle BAC \: \: = \: {45} \degree \: + \: {15} \degree

\: \: \: \: \: \angle BAC \: \: = \: {60} \degree

__________________________

Attachments:
Similar questions