Math, asked by deepaliwalia1882, 1 year ago

Two chords of length 10cm and 24cm are drawn in a circle of radius=13 cm .Find the distance between the chords

Answers

Answered by BrainlyConqueror0901
0

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Distance\:between\:chords=17\:cm}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a circle whose two chords length and radius of circle is given.

• We have to find the distance between two chords.

 \underline\bold{Given : } \\  \implies First \: chord = 10 \: cm \\   \\  \implies Second \: chord = 24 \: cm \\  \\  \implies Radius  = 13 \: cm \\  \\  \underline \bold{To \: Find : }  \\  \implies Distance \: between \: two \: chords = ?

 \bold{In   \: \triangle \:  OMA : }\\ \\ \bold{by \: phythagoras \: theoram : }  \\  \implies   ({OA})^{2}  =  ({OM})^{2}  +  ({MA})^{2}  \\   \\  \implies  {13}^{2}  =  ({OM})^{2}  +  {12}^{2}  \\  \\  \implies169 - 144 =   ({OM})^{2}  \\  \\  \implies OM= \sqrt{25}  \\  \\   \bold{\implies OM = 5 \: cm} \\  \\  \bold{In \:  \triangle \: ONC : } \\  \\  \bold{by \: phythagras \: theoram : } \\ \implies  ({OC})^{2}  = ( {ON})^{2}  + ({NC})^{2}  \\  \\  \implies  {13}^{2}  = ( {ON})^{2}  +  {5}^{2}  \\  \\  \implies 169 - 25 =  ({ON})^{2}  \\  \\  \implies ON =  \sqrt{144}  \\  \\  \bold {\implies ON= 12 \: cm} \\  \\  \bold{distance \: between \: two \: chords : } \\  \implies MN = OM+ ON \\  \\  \implies MM= 5 + 12 \\  \\   \bold{\implies MN = 17 \: cm} \\  \\   \bold{\therefore distance \: between \: chords \: is \: 17 \: cm}

Attachments:
Similar questions