Physics, asked by SONAELSASIMON, 1 year ago

TWO COHERENT MONOCHROMATIC LIGHT BEAMS OF INTENSOTES I & 4I ARE SUPERIMPOSED .THE MAXIMUM & MINIMUM POSSIBLE INTENSITIES IN THE RESULTING BEAM ARE

Answers

Answered by dhruvsh
45
The maximum intensity is given as

= ( √Intensity1 + √Intensity2)^2
= ( √I + √4I)^2 =( √I + 2√I)^2 = { 3√I }^2 = 9I

Minimum Intensity
= ( √Intensity1 - √Intensity2)^2
= ( √4I - √I)^2 = ( √I)^2 = I

Hope this helps you (
Answered by SushmitaAhluwalia
10

The maximum and minimum possible intensities in the resulting beam are 9I and I respectively.

  • If I_{1} and I_{2} are the intensities of two coherent monochromatic light beams, then

                     I_{max}=(\sqrt{I_{1}}+\sqrt{I_{2}})^{2}

                    I_{min}=(\sqrt{I_{1}}-\sqrt{I_{2}})^{2}

  • Here,

                     I_{1}=I,I_{2}=4I

          Maximum intensity:

                     I_{max}=(\sqrt{I}+\sqrt{4I})^{2}

                     I_{max}=\sqrt{I}^{2} +\sqrt{4I}^{2}+2\sqrt{I}\sqrt{4I}

                     I_{max}=I+4I+4I

                      I_{max}=9I

          Minimum intensity:

                      I_{min}=(\sqrt{I}-\sqrt{4I})^{2}

                      I_{min}=\sqrt{I}^{2} +\sqrt{4I}^{2}-2\sqrt{I}\sqrt{4I}

                      I_{min}=I+4I-4I

                      I_{min}=I

                     

                     

Similar questions