Math, asked by raotd, 5 months ago

Two concentric circles of radii 15 cm, 12 cm are drawn. Find the length of chord of larger circle which touches the smaller circle.

Answers

Answered by pandaXop
66

Chord = 18 cm

Step-by-step explanation:

Given:

  • Radii of two concentric circles is 15 and 12 cm respectively.

To Find:

  • Length of chord of larger circle which touches the smaller circle ?

Solution: Let A be the bigger circle of radius 15 cm and A' be the smaller circle of radius 12 cm. O is common centre of both the circles.

Let BC be a chord of circle A , passing by touching the smaller circle. Join O to C & B.

Here we have

  • OC = OB = 15 cm (radii of A)

  • OD = 12 cm (radius of A')

  • BC = (chord of A)

  • OD is also perpendicular to BC.

  • ∠ODC = ∠ODB = 90°

  • BD = DC (OD bisects BD)

[ See figure for understanding ]

Now in right angled ∆ODC we have

  • OC {hypotenuse}
  • DC {base}
  • OD {perpendicular}

Using Pythagoras theorem

= Perpendicular² + Base²

\implies{\rm } OC² = OD² + DC²

\implies{\rm } 15² = 12² + DC²

\implies{\rm } 225 144 = DC²

\implies{\rm } 81 = DC

\implies{\rm } 9 = DC

∴ BD = DC = 9 cm

Hence, BC = 9 + 9 = 18 cm. This is required length of chord which touches the smaller circle.

Attachments:
Answered by Anonymous
427

Diagram :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(1.2,0)(1.121,1.121)(0,1.2)\qbezier(1.2,0)(1.121,-1.121)(0,-1.2)\qbezier(0,-1.2)(-1.121,-1.121)(-1.2,0)\qbezier(-1.2,0)(-1.121,1.121)(0,1.2)\put(2, - 1.2){\line(-1,0){4}}\put(0, - 1.2){\line(0,1){1.2}}\put( - 0.2, - 1.5){A}\put(0,0){O}\qbezier(0,0)(0,0)( - 2, - 1.2)\put( - 2.3, - 1.5){B}\put(2, - 1.5){C}\put( - 1.5,  - 0.3){ \sf 15 cm}\put(0, - 0.8){ \sf 12 cm}\end{picture}

Given :

  • Two circles of radii 15 cm & 12 cm with common centre.

To Find :

  • Find the length of chord of larger circle which touches the smaller circle.

Solution :

By Using Pythagoras theorem :

 \sf  : \implies \:  \:  \:  \:  \:  \:  \:  {12}^{2}    =   {15}^{2}  +  {PB}^{2}  \\  \\  \\ \sf  : \implies \:  \:  \:  \:  \:  \:  \:144 = 225 + {PB}^{2}  \\  \\  \\ \sf  : \implies \:  \:  \:  \:  \:  \:  \:{PB}^{2}   = 225 - 144\\  \\  \\ \sf  : \implies \:  \:  \:  \:  \:  \:  \:  \:{PB}^{2}   = 81 \\  \\  \\  \\ \sf  : \implies \:  \:  \:  \:  \:  \:  \:  \:PB \: = \: 9

The perpendicular drawn from the centre of the circle to a chord, bisects it :

\sf  : \implies \:  \:  \:  \:  \:  \:  \:  \:AB = 2  \times PB   \\  \\  \\  \: \sf  : \implies \:  \:  \:  \:  \:  \:  \:  \:AB= 2 \times 9 \\  \\  \\ \sf  : \implies \:  \:  \:  \:  \:  \:  \:  \:AB= 18

The length of the chord of the larger circle which touches the smaller circle is 18 cm.


Anonymous: Great!
Similar questions