Math, asked by aniket8102, 1 day ago

two cylinder have their radii in the ratio 3:1 but their heights are in the ratio 1:3 compare their volumes

give teh answer fast

step by step explanation ​

Answers

Answered by mathdude500
44

\large\underline{\sf{Solution-}}

Given that,

  • The radii of the bases of a two cylinder are in the ratio 3:1

Let assume that

  • Radius of first cylinder = 3r

  • Radius of second cylinder = r

Further, given that

  • Height of two cylinders are in the ratio 1 : 3

Let assume that

  • Height of first cylinder = h

  • Height of second cylinder = 3h

So, Volume of cylinder of radius 3r and height h is given by

\rm \: Volume_{(Cylinder \: 1)} = \: \pi \:  {(3r)}^{2} \: h \:

\rm\implies \:Volume_{(Cylinder \: 1)} = 9\: \pi \:  {r}^{2} \: h  \: \\

Now, Volume of cylinder of radius r and height 3h is given by

\rm \: Volume_{(Cylinder \: 2)} = \: \pi \:  {r}^{2} \: (3h) \: \\

\rm\implies \:Volume_{(Cylinder \: 2)} = 3\: \pi \:  {r}^{2} \: h  \: \\

Hence,

\rm \: Volume_{(Cylinder \: 1)} : Volume_{(Cylinder \: 2)} \\

\rm \:  =  \: \:9 \:  \pi \:  {r}^{2} \: h \: : 3 \: \: \pi \:  {r}^{2} \: h \: \\

\rm \:  =  \: 3 : 1 \\

Hence,

\rm\implies \:\boxed{ \rm{  Volume_{(Cylinder \: 1)} : Volume_{(Cylinder \: 2)}  = 3 : 1 \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by FiddlePie
120

 \:  \ \red {answer}

Given that,

  • The radii of the bases of a two cylinder are in the ratio 3:1

Let assume that

  • Radius of first cylinder = 3r
  • Radius of second cylinder = r

Further, given that

  • Height of two cylinders are in the ratio 1 : 3

Let assume that

  • Height of first cylinder = h
  • Height of second cylinder = 3h

So, Volume of cylinder of radius 3r and height h is given by

Volume(Cylinder2)=πr2(3h)</p><p>

⟹Volume(Cylinder2)=3πr2h</p><p></p><p></p><p>

Hence,

=9πr2h:3πr2h</p><p>

=3:1

Hence,

⟹Volume(Cylinder1):Volume(Cylinder2)=3:1</p><p></p><p>\rule{190pt}{2pt}</p><p></p><p>

Similar questions